r5 - 30 May 2012 - 09:10:18 - JohnRoweYou are here: Astrophysics Wiki >  Sandbox Web  > BigTest
Test again, this time over https. It seems to work. OK.

Hi John

yet

Again, again and again

Our updated Terms of Use will become effective on May 25, 2012. Find out more. Laser From Wikipedia, the free encyclopedia Jump to: navigation, search For other uses, see Laser (disambiguation). Page semi-protected United States Air Force laser experiment Red (635 nm), green (532 nm), and blue-violet (445 nm) lasers

Our updated Terms of Use will become effective on May 25, 2012. Find out more.

Laser

From Wikipedia, the free encyclopedia

Jump to: navigation, search

For other uses, see Laser (disambiguation).
United States Air Force laser experiment
Red (635 nm), green (532 nm), and blue-violet (445 nm) lasers

A laser is a device that emits light ( electromagnetic radiation) through a process of optical amplification based on the stimulated emission of photons. The term "laser" originated as an acronym for Light Amplification by Stimulated Emission of Radiation. [1] [2] The emitted laser light is notable for its high degree of spatial and temporal coherence, unattainable using other technologies.

Spatial coherence typically is expressed through the output being a narrow beam which is diffraction-limited, often a so-called "pencil beam." Laser beams can be focused to very tiny spots, achieving a very high irradiance. Or they can be launched into a beam of very low divergence in order to concentrate their power at a large distance.

Temporal (or longitudinal) coherence implies a polarized wave at a single frequency whose phase is correlated over a relatively large distance (the coherence length) along the beam. [3] A beam produced by a thermal or other incoherent light source has an instantaneous amplitude and phase which vary randomly with respect to time and position, and thus a very short coherence length.

Most so-called "single wavelength" lasers actually produce radiation in several modes having slightly different frequencies (wavelengths), often not in a single polarization. And although temporal coherence implies monochromaticity, there are even lasers that emit a broad spectrum of light, or emit different wavelengths of light simultaneously. There are some lasers which are not single spatial mode and consequently their light beams diverge more than required by the diffraction limit. However all such devices are classified as "lasers" based on their method of producing that light: stimulated emission. Lasers are employed in applications where light of the required spatial or temporal coherence could not be produced using simpler technologies.

Contents

Terminology

Laser beams in fog, reflected on a car windshield

The word laser started as an acronym for "light amplification by stimulated emission of radiation"; in modern usage "light" broadly denotes electromagnetic radiation of any frequency, not only visible light, hence infrared laser, ultraviolet laser, X-ray laser, and so on. Because the microwave predecessor of the laser, the maser, was developed first, devices of this sort operating at microwave and radio frequencies are referred to as "masers" rather than "microwave lasers" or "radio lasers". In the early technical literature, especially at Bell Telephone Laboratories, the laser was called an optical maser; this term is now obsolete. [4]

A laser which produces light by itself is technically an optical oscillator rather than an optical amplifier as suggested by the acronym. It has been humorously noted that the acronym LOSER, for "light oscillation by stimulated emission of radiation," would have been more correct. [5] With the widespread use of the original acronym as a common noun, actual optical amplifiers have come to be referred to as "laser amplifiers", notwithstanding the apparent redundancy in that designation.

The back-formed verb to lase is frequently used in the field, meaning "to produce laser light," [6] especially in reference to the gain medium of a laser; when a laser is operating it is said to be "lasing." Further use of the words laser and maser in an extended sense, not referring to laser technology or devices, can be seen in usages such as astrophysical maser and atom laser.

Design

Principal components:
1. Gain medium
2. Laser pumping energy
3. High reflector
4. Output coupler 5. Laser beam
Main article: Laser construction

A laser consists of a gain medium inside a highly reflective optical cavity, as well as a means to supply energy to the gain medium. The gain medium is a material with properties that allow it to amplify light by stimulated emission. In its simplest form, a cavity consists of two mirrors arranged such that light bounces back and forth, each time passing through the gain medium. Typically one of the two mirrors, the output coupler, is partially transparent. The output laser beam is emitted through this mirror.

Light of a specific wavelength that passes through the gain medium is amplified (increases in power); the surrounding mirrors ensure that most of the light makes many passes through the gain medium, being amplified repeatedly. Part of the light that is between the mirrors (that is, within the cavity) passes through the partially transparent mirror and escapes as a beam of light.

The process of supplying the energy required for the amplification is called pumping. The energy is typically supplied as an electrical current or as light at a different wavelength. Such light may be provided by a flash lamp or perhaps another laser. Most practical lasers contain additional elements that affect properties such as the wavelength of the emitted light and the shape of the beam.

Laser physics

See also: Laser science

Electrons and how they interact with electromagnetic fields are important in our understanding of chemistry and physics.

Stimulated emission

In the classical view, the energy of an electron orbiting an atomic nucleus is larger for orbits further from the nucleus of an atom. However, quantum mechanical effects force electrons to take on discrete positions in orbitals. Thus, electrons are found in specific energy levels of an atom, two of which are shown below:

Stimulated Emission.svg

When an electron absorbs energy either from light (photons) or heat ( phonons), it receives that incident quanta of energy. But transitions are only allowed in between discrete energy levels such as the two shown above. This leads to emission lines and absorption lines.

When an electron is excited from a lower to a higher energy level, it will not stay that way forever. An electron in an excited state may decay to a lower energy state which is not occupied, according to a particular time constant characterizing that transition. When such an electron decays without external influence, emitting a photon, that is called " spontaneous emission". The phase associated with the photon that is emitted is random. A material with many atoms in such an excited state may thus result in radiation which is very spectrally limited (centered around one wavelength of light), but the individual photons would have no common phase relationship and would emanate in random directions. This is the mechanism of fluorescence and thermal emission.

An external electromagnetic field at a frequency associated with a transition can affect the quantum mechanical state of the atom. As the electron in the atom makes a transition between two stationary states (neither of which shows a dipole field), it enters a transition state which does have a dipole field, and which acts like a small electric dipole, and this dipole oscillates at a characteristic frequency. In response to the external electric field at this frequency, the probability of the atom entering this transition state is greatly increased. Thus, the rate of transitions between two stationary states is enhanced beyond that due to spontaneous emission. Such a transition to the higher state is called absorption, and it destroys an incident photon (the photon's energy goes into powering the increased energy of the higher state). A transition from the higher to a lower energy state, however, produces an additional photon; this is the process of stimulated emission.

Gain medium and cavity

A helium-neon laser demonstration at the Kastler-Brossel Laboratory at Univ. Paris 6. The pink-orange glow running through the center of the tube is from the electric discharge which produces incoherent light, just as in a neon tube. This glowing plasma is excited and then acts as the gain medium through which the internal beam passes, as it is reflected between the two mirrors. Laser radiation output through the front mirror can be seen to produce a tiny (about 1mm in diameter) intense spot on the screen, to the right. Although it is a deep and pure red color, spots of laser light are so intense that cameras are typically overexposed and distort their color.
Spectrum of a helium neon laser illustrating its very high spectral purity (limited by the measuring apparatus). The .002 nm bandwidth of the lasing medium is well over 10,000 times narrower than the spectral width of a light-emitting diode (whose spectrum is shown here for comparison), with the bandwidth of a single longitudinal mode being much narrower still.

The gain medium is excited by an external source of energy into an excited state. In most lasers this medium consists of population of atoms which have been excited into such a state by means of an outside light source, or a electrical field which supplies energy for atoms to absorb and be transformed into their excited states.

The gain medium of a laser is normally a material of controlled purity, size, concentration, and shape, which amplifies the beam by the process of stimulated emission described above. This material can be of any state: gas, liquid, solid, or plasma. The gain medium absorbs pump energy, which raises some electrons into higher-energy (" excited") quantum states. Particles can interact with light by either absorbing or emitting photons. Emission can be spontaneous or stimulated. In the latter case, the photon is emitted in the same direction as the light that is passing by. When the number of particles in one excited state exceeds the number of particles in some lower-energy state, population inversion is achieved and the amount of stimulated emission due to light that passes through is larger than the amount of absorption. Hence, the light is amplified. By itself, this makes an optical amplifier. When an optical amplifier is placed inside a resonant optical cavity, one obtains a laser.

In a few situations it is possible to obtain lasing with only a single pass of EM radiation through the gain medium, and this produces a laser beam without any need for a resonant or reflective cavity (see for example nitrogen laser). Thus, reflection in a resonant cavity is usually required for a laser, but is not absolutely necessary.

The optical resonator is sometimes referred to as an "optical cavity", but this is a misnomer: lasers use open resonators as opposed to the literal cavity that would be employed at microwave frequencies in a maser. The resonator typically consists of two mirrors between which a coherent beam of light travels in both directions, reflecting back on itself so that an average photon will pass through the gain medium repeatedly before it is emitted from the output aperture or lost to diffraction or absorption. If the gain (amplification) in the medium is larger than the resonator losses, then the power of the recirculating light can rise exponentially. But each stimulated emission event returns an atom from its excited state to the ground state, reducing the gain of the medium. With increasing beam power the net gain (gain times loss) reduces to unity and the gain medium is said to be saturated. In a continuous wave (CW) laser, the balance of pump power against gain saturation and cavity losses produces an equilibrium value of the laser power inside the cavity; this equilibrium determines the operating point of the laser. If the applied pump power is too small, the gain will never be sufficient to overcome the resonator losses, and laser light will not be produced. The minimum pump power needed to begin laser action is called the lasing threshold. The gain medium will amplify any photons passing through it, regardless of direction; but only the photons in a spatial mode supported by the resonator will pass more than once through the medium and receive substantial amplification.

The light emitted

The light generated by stimulated emission is very similar to the input signal in terms of wavelength, phase, and polarization. This gives laser light its characteristic coherence, and allows it to maintain the uniform polarization and often monochromaticity established by the optical cavity design.

The beam in the cavity and the output beam of the laser, when travelling in free space (or a homogenous medium) rather than waveguides (as in an optical fiber laser), can be approximated as a Gaussian beam in most lasers; such beams exhibit the minimum divergence for a given diameter. However some high power lasers may be multimode, with the transverse modes often approximated using Hermite- Gaussian or Laguerre-Gaussian functions. It has been shown that unstable laser resonators (not used in most lasers) produce fractal shaped beams. [7] Near the beam "waist" (or focal region) it is highly collimated: the wavefronts are planar, normal to the direction of propagation, with no beam divergence at that point. However due to diffraction, that can only remain true well within the Rayleigh range. The beam of a single transverse mode (gaussian beam) laser eventually diverges at an angle which varies inversely with the beam diameter, as required by diffraction theory. Thus, the "pencil beam" directly generated by a common helium-neon laser would spread out to a size of perhaps 500 kilometers when shone on the Moon (from the distance of the earth). On the other hand the light from a semiconductor laser typically exits the tiny crystal with a large divergence: up to 50°. However even such a divergent beam can be transformed into a similarly collimated beam by means of a lens system, as is always included, for instance, in a laser pointer whose light originates from a laser diode. That is possible due to the light being of a single spatial mode. This unique property of laser light, spatial coherence, cannot be replicated using standard light sources (except by discarding most of the light) as can be appreciated by comparing the beam from a flashlight (torch) or spotlight to that of almost any laser.

Quantum vs. classical emission processes

The mechanism of producing radiation in a laser relies on stimulated emission, where energy is extracted from a transition in an atom or molecule. This is a quantum phenomenon discovered by Einstein who derived the relationship between the A coefficient describing spontaneous emission and the B coefficient which applies to absorption and stimulated emission. However in the case of the free electron laser, atomic energy levels are not involved; it appears that the operation of this rather exotic device can be explained without reference to quantum mechanics.

Continuous and pulsed modes of operation

A laser can be classified as operating in either continuous or pulsed mode, depending on whether the power output is essentially continuous over time or whether its output takes the form of pulses of light on one or another time scale. Of course even a laser whose output is normally continuous can be intentionally turned on and off at some rate in order to create pulses of light. When the modulation rate is on time scales much slower than the cavity lifetime and the time period over which energy can be stored in the lasing medium or pumping mechanism, then it is still classified as a "modulated" or "pulsed" continuous wave laser. Most laser diodes used in communication systems fall in that category.

Continuous wave operation

Some applications of lasers depend on a beam whose output power is constant over time. Such a laser is known as continuous wave ( CW). Many types of lasers can be made to operate in continuous wave mode to satisfy such an application. Many of these lasers actually lase in several longitudinal modes at the same time, and beats between the slightly different optical frequencies of those oscillations will in fact produce amplitude variations on time scales shorter than the round-trip time (the reciprocal of the frequency spacing between modes), typically a few nanoseconds or less. In most cases these lasers are still termed "continuous wave" as their output power is steady when averaged over any longer time periods, with the very high frequency power variations having little or no impact in the intended application. (However the term is not applied to mode-locked lasers, where the intention is to create very short pulses at the rate of the round-trip time).

For continuous wave operation it is required for the population inversion of the gain medium to be continually replenished by a steady pump source. In some lasing media this is impossible. In some other lasers it would require pumping the laser at a very high continuous power level which would be impractical or destroy the laser by producing excessive heat. Such lasers cannot be run in CW mode.

Pulsed operation

Pulsed operation of lasers refers to any laser not classified as continuous wave, so that the optical power appears in pulses of some duration at some repetition rate. This encompasses a wide range of technologies addressing a number of different motivations. Some lasers are pulsed simply because they cannot be run in continuous mode.

In other cases the application requires the production of pulses having as large an energy as possible. Since the pulse energy is equal to the average power divided by the repetition rate, this goal can sometimes be satisfied by lowering the rate of pulses so that more energy can be built up in between pulses. In laser ablation for example, a small volume of material at the surface of a work piece can be evaporated if it is heated in a very short time, whereas supplying the energy gradually would allow for the heat to be absorbed into the bulk of the piece, never attaining a sufficiently high temperature at a particular point.

Other applications rely on the peak pulse power (rather than the energy in the pulse), especially in order to obtain nonlinear optical effects. For a given pulse energy, this requires creating pulses of the shortest possible duration utilizing techniques such as Q-switching.

The optical bandwidth of a pulse cannot be narrower than the reciprocal of the pulse width. In the case of extremely short pulses, that implies lasing over a considerable bandwidth, quite contrary to the very narrow bandwidths typical of CW lasers. The lasing medium in some dye lasers and vibronic solid-state lasers produces optical gain over a wide bandwidth, making a laser possible which can thus generate pulses of light as short as a few femtoseconds (10−15 s).

Q-switching

Main article: Q-switching

In a Q-switched laser, the population inversion is allowed to build up by introducing loss inside the resonator which exceeds the gain of the medium; this can also be described as a reduction of the quality factor or 'Q' of the cavity. Then, after the pump energy stored in the laser medium has approached the maximum possible level, the introduced loss mechanism (often an electro- or acousto-optical element) is rapidly removed (or that occurs by itself in a passive device), allowing lasing to begin which rapidly obtains the stored energy in the gain medium. This results in a short pulse incorporating that energy, and thus a high peak power.

Mode-locking

Main article: Mode-locking

A mode-locked laser is capable of emitting extremely short pulses on the order of tens of picoseconds down to less than 10 femtoseconds. These pulses will repeat at the round trip time, that is, the time that it takes light to complete one round trip between the mirrors comprising the resonator. Due to the Fourier limit (also known as energy-time uncertainty), a pulse of such short temporal length has a spectrum spread over a considerable bandwidth. Thus such a gain medium must have a gain bandwidth sufficiently broad to amplify those frequencies. An example of a suitable material is titanium-doped, artificially grown sapphire ( Ti:sapphire) which has a very wide gain bandwidth and can thus produce pulses of only a few femtoseconds duration.

Such mode-locked lasers are a most versatile tool for researching processes occurring on extremely short time scales (known as femtosecond physics, femtosecond chemistry and ultrafast science), for maximizing the effect of nonlinearity in optical materials (e.g. in second-harmonic generation, parametric down-conversion, optical parametric oscillators and the like) due to the large peak power, and in ablation applications.[ citation needed ] Again, because of the extremely short pulse duration, such a laser will produce pulses which achieve an extremely high peak power.

Pulsed pumping

Another method of achieving pulsed laser operation is to pump the laser material with a source that is itself pulsed, either through electronic charging in the case of flash lamps, or another laser which is already pulsed. Pulsed pumping was historically used with dye lasers where the inverted population lifetime of a dye molecule was so short that a high energy, fast pump was needed. The way to overcome this problem was to charge up large capacitors which are then switched to discharge through flashlamps, producing an intense flash. Pulsed pumping is also required for three-level lasers in which the lower energy level rapidly becomes highly populated preventing further lasing until those atoms relax to the ground state. These lasers, such as the excimer laser and the copper vapor laser, can never be operated in CW mode.

History

Foundations

In 1917, Albert Einstein established the theoretic foundations for the laser and the maser in the paper Zur Quantentheorie der Strahlung (On the Quantum Theory of Radiation); via a re-derivation of Max Planck’s law of radiation, conceptually based upon probability coefficients ( Einstein coefficients) for the absorption, spontaneous emission, and stimulated emission of electromagnetic radiation; in 1928, Rudolf W. Ladenburg confirmed the existences of the phenomena of stimulated emission and negative absorption; [8] in 1939, Valentin A. Fabrikant predicted the use of stimulated emission to amplify “short” waves; [9] in 1947, Willis E. Lamb and R. C. Retherford found apparent stimulated emission in hydrogen spectra and effected the first demonstration of stimulated emission; [8] in 1950, Alfred Kastler (Nobel Prize for Physics 1966) proposed the method of optical pumping, experimentally confirmed, two years later, by Brossel, Kastler, and Winter. [10]

Maser

Main article: Maser
Aleksandr Prokhorov

In 1953, Charles Hard Townes and graduate students James P. Gordon and Herbert J. Zeiger produced the first microwave amplifier, a device operating on similar principles to the laser, but amplifying microwave radiation rather than infrared or visible radiation. Townes's maser was incapable of continuous output.[ citation needed ] Meanwhile, in the Soviet Union, Nikolay Basov and Aleksandr Prokhorov were independently working on the quantum oscillator and solved the problem of continuous-output systems by using more than two energy levels. These gain media could release stimulated emissions between an excited state and a lower excited state, not the ground state, facilitating the maintenance of a population inversion. In 1955, Prokhorov and Basov suggested optical pumping of a multi-level system as a method for obtaining the population inversion, later a main method of laser pumping.

Townes reports that several eminent physicists — among them Niels Bohr, John von Neumann, Isidor Rabi, Polykarp Kusch, and Llewellyn Thomas — argued the maser violated Heisenberg's uncertainty principle and hence could not work. [1] In 1964 Charles H. Townes, Nikolay Basov, and Aleksandr Prokhorov shared the Nobel Prize in Physics, “for fundamental work in the field of quantum electronics, which has led to the construction of oscillators and amplifiers based on the maser–laser principle”.

Laser

In 1957, Charles Hard Townes and Arthur Leonard Schawlow, then at Bell Labs, began a serious study of the infrared laser. As ideas developed, they abandoned infrared radiation to instead concentrate upon visible light. The concept originally was called an "optical maser". In 1958, Bell Labs filed a patent application for their proposed optical maser; and Schawlow and Townes submitted a manuscript of their theoretical calculations to the Physical Review, published that year in Volume 112, Issue No. 6.

LASER notebook: First page of the notebook wherein Gordon Gould coined the LASER acronym, and described the technologic elements for constructing the device.

Simultaneously, at Columbia University, graduate student Gordon Gould was working on a doctoral thesis about the energy levels of excited thallium. When Gould and Townes met, they spoke of radiation emission, as a general subject; afterwards, in November 1957, Gould noted his ideas for a “laser”, including using an open resonator (later an essential laser-device component). Moreover, in 1958, Prokhorov independently proposed using an open resonator, the first published appearance (the USSR) of this idea. Elsewhere, in the U.S., Schawlow and Townes had agreed to an open-resonator laser design — apparently unaware of Prokhorov’s publications and Gould’s unpublished laser work.

At a conference in 1959, Gordon Gould published the term LASER in the paper The LASER, Light Amplification by Stimulated Emission of Radiation. [1] [5] Gould’s linguistic intention was using the “-aser” word particle as a suffix — to accurately denote the spectrum of the light emitted by the LASER device; thus x-rays: xaser, ultraviolet: uvaser, et cetera; none established itself as a discrete term, although “raser” was briefly popular for denoting radio-frequency-emitting devices.

Gould’s notes included possible applications for a laser, such as spectrometry, interferometry, radar, and nuclear fusion. He continued developing the idea, and filed a patent application in April 1959. The U.S. Patent Office denied his application, and awarded a patent to Bell Labs, in 1960. That provoked a twenty-eight-year lawsuit, featuring scientific prestige and money as the stakes. Gould won his first minor patent in 1977, yet it was not until 1987 that he won the first significant patent lawsuit victory, when a Federal judge ordered the U.S. Patent Office to issue patents to Gould for the optically pumped and the gas discharge laser devices. The question of just how to assign credit for inventing the laser remains unresolved by historians. [11]

On May 16, 1960, Theodore H. Maiman operated the first functioning laser, [12] [13] at Hughes Research Laboratories, Malibu, California, ahead of several research teams, including those of Townes, at Columbia University, Arthur Schawlow, at Bell Labs, [14] and Gould, at the TRG (Technical Research Group) company. Maiman’s functional laser used a solid-state flashlamp-pumped synthetic ruby crystal to produce red laser light, at 694 nanometres wavelength; however, the device only was capable of pulsed operation, because of its three-level pumping design scheme. Later in 1960, the Iranian physicist Ali Javan, and William R. Bennett, and Donald Herriott, constructed the first gas laser, using helium and neon that was capable of continuous operation in the infrared (U.S. Patent 3,149,290); later, Javan received the Albert Einstein Award in 1993. Basov and Javan proposed the semiconductor laser diode concept. In 1962, Robert N. Hall demonstrated the first laser diode device, made of gallium arsenide and emitted at 850 nm the near- infrared band of the spectrum. Later, in 1962, Nick Holonyak, Jr. demonstrated the first semiconductor laser with a visible emission. This first semiconductor laser could only be used in pulsed-beam operation, and when cooled to liquid nitrogen temperatures (77 K). In 1970, Zhores Alferov, in the USSR, and Izuo Hayashi and Morton Panish of Bell Telephone Laboratories also independently developed room-temperature, continual-operation diode lasers, using the heterojunction structure.

Recent innovations

Graph showing the history of maximum laser pulse intensity throughout the past 40 years.

Since the early period of laser history, laser research has produced a variety of improved and specialized laser types, optimized for different performance goals, including:

  • new wavelength bands
  • maximum average output power
  • maximum peak pulse energy
  • maximum peak pulse power
  • minimum output pulse duration
  • maximum power efficiency
  • minimum cost

and this research continues to this day.

Lasing without maintaining the medium excited into a population inversion[ dubiousdiscuss ] was discovered in 1992 in sodium gas and again in 1995 in rubidium gas by various international teams.[ citation needed ] This was accomplished by using an external maser to induce "optical transparency" in the medium by introducing and destructively interfering the ground electron transitions between two paths, so that the likelihood for the ground electrons to absorb any energy has been cancelled.

Types and operating principles

For a more complete list of laser types see this list of laser types.
Wavelengths of commercially available lasers. Laser types with distinct laser lines are shown above the wavelength bar, while below are shown lasers that can emit in a wavelength range. The color codifies the type of laser material (see the figure description for more details).

Gas lasers

Main article: Gas laser

Following the invention of the HeNe? gas laser, many other gas discharges have been found to amplify light coherently. Gas lasers using many different gases have been built and used for many purposes. The helium-neon laser (HeNe?) is able to operate at a number of different wavelengths, however the vast majority are engineered to lase at 633 nm; these relatively low cost but highly coherent lasers are extremely common in optical research and educational laboratories. Commercial carbon dioxide (CO2) lasers can emit many hundreds of watts in a single spatial mode which can be concentrated into a tiny spot. This emission is in the thermal infrared at 10.6 µm; such lasers are regularly used in industry for cutting and welding. The efficiency of a CO2 laser is unusually high: over 10%. Argon-ion lasers can operate at a number of lasing transitions between 351 and 528.7 nm. Depending on the optical design one or more of these transitions can be lasing simultaneously; the most commonly used lines are 458 nm, 488 nm and 514.5 nm. A nitrogen transverse electrical discharge in gas at atmospheric pressure (TEA) laser is an inexpensive gas laser, often home-built by hobbyists, which produces rather incoherent UV light at 337.1 nm. [15] Metal ion lasers are gas lasers that generate deep ultraviolet wavelengths. Helium- silver (HeAg?) 224 nm and neon- copper (NeCu?) 248 nm are two examples. Like all low-pressure gas lasers, the gain media of these lasers have quite narrow oscillation linewidths, less than 3 GHz (0.5 picometers), [16] making them candidates for use in fluorescence suppressed Raman spectroscopy.

Chemical lasers

Chemical lasers are powered by a chemical reaction permitting a large amount of energy to be released quickly. Such very high power lasers are especially of interest to the military, however continuous wave chemical lasers at very high power levels, fed by streams of gasses, have been developed and have some industrial applications. As examples, in the Hydrogen fluoride laser (2700-2900 nm) and the Deuterium fluoride laser (3800 nm) the reaction is the combination of hydrogen or deuterium gas with combustion products of ethylene in nitrogen trifluoride.

Excimer lasers

Excimer lasers are a special sort of gas laser powered by an electric discharge in which the lasing medium is an excimer, or more precisely an exciplex in existing designs. These are molecules which can only exist with one atom in an excited electronic state. Once the molecule transfers its excitation energy to a photon, therefore, its atoms are no longer bound to each other and the molecule disintegrates. This drastically reduces the population of the lower energy state thus greatly facilitating a population inversion. Excimers currently used are all noble gas compounds; noble gasses are chemically inert and can only form compounds while in an excited state. Excimer lasers typically operate at ultraviolet wavelengths with major applicatons including semiconductor photolithography and LASIK eye surgery. Commonly used excimer molecules include ArF? (emission at 193 nm), KrCl? (222 nm), KrF? (248 nm), XeCl? (308 nm), and XeF? (351 nm). [17] The molecular fluorine laser, emitting at 157 nm in the vacuum ultraviolet is sometimes referred to as an excimer laser, however this appears to be a misnomer inasmuch as F2 is a stable compound.

Solid-state lasers

A frequency-doubled green laser pointer, showing internal construction. Two AAA cells and electronics power the laser module (lower diagram) This contains a powerful 808 nm IR diode laser that optically pumps a Nd:YVO4 crystal inside a laser cavity. That laser produces 1064 nm (infrared) light which is mainly confined inside the resonator. Also inside the laser cavity, however, is a non-linear KTP crystal which causes frequency doubling, resulting in green light at 532 nm. The front mirror is transparent to this visible wavelength which is then expanded and collimated using two lenses (in this particular design).

Solid-state lasers use a crystalline or glass rod which is "doped" with ions that provide the required energy states. For example, the first working laser was a ruby laser, made from ruby ( chromium-doped corundum). The population inversion is actually maintained in the "dopant", such as chromium or neodymium. These materials are pumped optically using a shorter wavelength than the lasing wavelength, often from a flashtube or from another laser.

It should be noted that "solid-state" in this sense refers to a crystal or glass, but this usage is distinct from the designation of "solid-state electronics" in referring to semiconductors. Semiconductor lasers (laser diodes) are pumped electrically and are thus not referred to as solid-state lasers. The class of solid-state lasers would, however, properly include fiber lasers in which dopants in the glass lase under optical pumping. But in practice these are simply referred to as " fiber lasers" with "solid-state" reserved for lasers using a solid rod of such a material.

Neodymium is a common "dopant" in various solid-state laser crystals, including yttrium orthovanadate ( Nd:YVO4), yttrium lithium fluoride ( Nd:YLF) and yttrium aluminium garnet ( Nd:YAG). All these lasers can produce high powers in the infrared spectrum at 1064 nm. They are used for cutting, welding and marking of metals and other materials, and also in spectroscopy and for pumping dye lasers.

These lasers are also commonly frequency doubled, tripled or quadrupled, in so-called " diode pumped solid state" or DPSS lasers. Under second, third, or fourth harmonic generation these produce 532 nm ( green, visible), 355 nm and 266 nm ( UV) beams. This is the technology behind the bright laser pointers particularly at green (532 nm) and other short visible wavelengths.

Ytterbium, holmium, thulium, and erbium are other common "dopants" in solid-state lasers. Ytterbium is used in crystals such as Yb:YAG, Yb:KGW, Yb:KYW, Yb:SYS, Yb:BOYS, Yb:CaF2, typically operating around 1020-1050 nm. They are potentially very efficient and high powered due to a small quantum defect. Extremely high powers in ultrashort pulses can be achieved with Yb:YAG. Holmium-doped YAG crystals emit at 2097 nm and form an efficient laser operating at infrared wavelengths strongly absorbed by water-bearing tissues. The Ho-YAG is usually operated in a pulsed mode, and passed through optical fiber surgical devices to resurface joints, remove rot from teeth, vaporize cancers, and pulverize kidney and gall stones.

Titanium-doped sapphire ( Ti:sapphire) produces a highly tunable infrared laser, commonly used for spectroscopy. It is also notable for use as a mode-locked laser producing ultrashort pulses of extremely high peak power.

Thermal limitations in solid-state lasers arise from unconverted pump power that manifests itself as heat. This heat, when coupled with a high thermo-optic coefficient (d n /d T) can give rise to thermal lensing as well as reduced quantum efficiency. These types of issues can be overcome by another novel diode-pumped solid-state laser, the diode-pumped thin disk laser. The thermal limitations in this laser type are mitigated by using a laser medium geometry in which the thickness is much smaller than the diameter of the pump beam. This allows for a more even thermal gradient in the material. Thin disk lasers have been shown to produce up to kilowatt levels of power. [18]

Fiber lasers

Main article: Fiber laser

Solid-state lasers or laser amplifiers where the light is guided due to the total internal reflection in a single mode optical fiber are instead called fiber lasers. Guiding of light allows extremely long gain regions providing good cooling conditions; fibers have high surface area to volume ratio which allows efficient cooling. In addition, the fiber's waveguiding properties tend to reduce thermal distortion of the beam. Erbium and ytterbium ions are common active species in such lasers.

Quite often, the fiber laser is designed as a double-clad fiber. This type of fiber consists of a fiber core, an inner cladding and an outer cladding. The index of the three concentric layers is chosen so that the fiber core acts as a single-mode fiber for the laser emission while the outer cladding acts as a highly multimode core for the pump laser. This lets the pump propagate a large amount of power into and through the active inner core region, while still having a high numerical aperture (NA) to have easy launching conditions.

Pump light can be used more efficiently by creating a fiber disk laser, or a stack of such lasers.

Fiber lasers have a fundamental limit in that the intensity of the light in the fiber cannot be so high that optical nonlinearities induced by the local electric field strength can become dominant and prevent laser operation and/or lead to the material destruction of the fiber. This effect is called photodarkening. In bulk laser materials, the cooling is not so efficient, and it is difficult to separate the effects of photodarkening from the thermal effects, but the experiments in fibers show that the photodarkening can be attributed to the formation of long-living color centers.[ citation needed ]

Photonic crystal lasers

Photonic crystal lasers are lasers based on nano-structures that provide the mode confinement and the density of optical states (DOS) structure required for the feedback to take place.[ clarification needed ] They are typical micrometre-sized[ dubiousdiscuss ] and tunable on the bands of the photonic crystals. [19][ clarification needed ]

Semiconductor lasers

A 5.6 mm 'closed can' commercial laser diode, probably from a CD or DVD player

Semiconductor lasers are diodes which are electrically pumped. Recombination of electrons and holes created by the applied current introduces optical gain. Reflection from the ends of the crystal form an optical resonator, although the resonator can be external to the semiconductor in some designs.

Commercial laser diodes emit at wavelengths from 375 nm to 3500 nm. Low to medium power laser diodes are used in laser printers and CD/DVD players. Laser diodes are also frequently used to optically pump other lasers with high efficiency. The highest power industrial laser diodes, with power up to 10 kW (70dBm)[ citation needed ], are used in industry for cutting and welding. External-cavity semiconductor lasers have a semiconductor active medium in a larger cavity. These devices can generate high power outputs with good beam quality, wavelength-tunable narrow- linewidth radiation, or ultrashort laser pulses.

Vertical cavity surface-emitting lasers ( VCSELs) are semiconductor lasers whose emission direction is perpendicular to the surface of the wafer. VCSEL devices typically have a more circular output beam than conventional laser diodes, and potentially could be much cheaper to manufacture. As of 2005, only 850 nm VCSELs are widely available, with 1300 nm VCSELs beginning to be commercialized, [20] and 1550 nm devices an area of research. VECSELs are external-cavity VCSELs. Quantum cascade lasers are semiconductor lasers that have an active transition between energy sub-bands of an electron in a structure containing several quantum wells.

The development of a silicon laser is important in the field of optical computing. Silicon is the material of choice for integrated circuits, and so electronic and silicon photonic components (such as optical interconnects) could be fabricated on the same chip. Unfortunately, silicon is a difficult lasing material to deal with, since it has certain properties which block lasing. However, recently teams have produced silicon lasers through methods such as fabricating the lasing material from silicon and other semiconductor materials, such as indium(III) phosphide or gallium(III) arsenide, materials which allow coherent light to be produced from silicon. These are called hybrid silicon laser. Another type is a Raman laser, which takes advantage of Raman scattering to produce a laser from materials such as silicon.

Dye lasers

Dye lasers use an organic dye as the gain medium. The wide gain spectrum of available dyes, or mixtures of dyes, allows these lasers to be highly tunable, or to produce very short-duration pulses ( on the order of a few femtoseconds). Although these tunable lasers are mainly known in their liquid form, researchers have also demonstrated narrow-linewidth tunable emission in dispersive oscillator configurations incorporating solid-state dye gain media. [21] In their most prevalent form these solid state dye lasers use dye-doped polymers as laser media.

Free electron lasers

Free electron lasers, or FELs, generate coherent, high power radiation, that is widely tunable, currently ranging in wavelength from microwaves, through terahertz radiation and infrared, to the visible spectrum, to soft X-rays. They have the widest frequency range of any laser type. While FEL beams share the same optical traits as other lasers, such as coherent radiation, FEL operation is quite different. Unlike gas, liquid, or solid-state lasers, which rely on bound atomic or molecular states, FELs use a relativistic electron beam as the lasing medium, hence the term free electron.

Bio laser

Living cells can be genetically engineered to produce Green fluorescent protein (GFP). The GFP is used as the laser's "gain medium", where light amplification takes place. The cells are then placed between two tiny mirrors, just 20 millionths of a metre across, which acted as the "laser cavity" in which light could bounce many times through the cell. Upon bathing the cell with blue light, it could be seen to emit directed and intense green laser light. [22] [23]

Exotic laser media

In September 2007, the BBC News reported that there was speculation about the possibility of using positronium annihilation to drive a very powerful gamma ray laser. [24] Dr. David Cassidy of the University of California, Riverside proposed that a single such laser could be used to ignite a nuclear fusion reaction, replacing the banks of hundreds of lasers currently employed in inertial confinement fusion experiments. [24]

Space-based X-ray lasers pumped by a nuclear explosion have also been proposed as antimissile weapons. [25] [26] Such devices would be one-shot weapons.

Uses

Lasers range in size from microscopic diode lasers (top) with numerous applications, to football field sized neodymium glass lasers (bottom) used for inertial confinement fusion, nuclear weapons research and other high energy density physics experiments.

When lasers were invented in 1960, they were called "a solution looking for a problem". [27] Since then, they have become ubiquitous, finding utility in thousands of highly varied applications in every section of modern society, including consumer electronics, information technology, science, medicine, industry, law enforcement, entertainment, and the military.

The first use of lasers in the daily lives of the general population was the supermarket barcode scanner, introduced in 1974. The laserdisc player, introduced in 1978, was the first successful consumer product to include a laser but the compact disc player was the first laser-equipped device to become common, beginning in 1982 followed shortly by laser printers.

Some other uses are:

In 2004, excluding diode lasers, approximately 131,000 lasers were sold with a value of US$2.19 billion. [30] In the same year, approximately 733 million diode lasers, valued at $3.20 billion, were sold. [31]

Examples by power

Laser application in astronomical adaptive optics imaging

Different applications need lasers with different output powers. Lasers that produce a continuous beam or a series of short pulses can be compared on the basis of their average power. Lasers that produce pulses can also be characterized based on the peak power of each pulse. The peak power of a pulsed laser is many orders of magnitude greater than its average power. The average output power is always less than the power consumed. Power Use 1-5 mW Laser pointers 5 mW CD-ROM drive 5–10 mW DVD player or DVD-ROM drive 100 mW High-speed CD-RW burner 250 mW Consumer 16x DVD-R burner 400 mW Burning through a jewel case including disk within 4 seconds [32] DVD 24x dual-layer recording. [33] 1 W Green laser in current Holographic Versatile Disc prototype development 1–20 W Output of the majority of commercially available solid-state lasers used for micro machining 30–100 W Typical sealed CO2 surgical lasers [34] 100–3000 W Typical sealed CO2 lasers used in industrial laser cutting 5 kW Output power achieved by a 1 cm diode laser bar [35] 100 kW Claimed output of a CO2 laser being developed by Northrop Grumman for military (weapon) applications

The continuous or average power required for some uses:

Examples of pulsed systems with high peak power:

Hobby uses

In recent years, some hobbyists have taken interests in lasers. Lasers used by hobbyists are generally of class IIIa or IIIb, although some have made their own class IV types. [38] However, compared to other hobbyists, laser hobbyists are far less common, due to the cost and potential dangers involved. Due to the cost of lasers, some hobbyists use inexpensive means to obtain lasers, such as salvaging laser diodes from broken DVD players (red), Blu-ray players (violet), or even higher power laser diodes from CD or DVD burners. [39]

Hobbyists also have been taking surplus pulsed lasers from retired military applications and modifying them for pulsed holography. Pulsed Ruby and pulsed YAG lasers have been used.

Safety

Warning symbol for lasers
Laser warning label
Main article: Laser safety

Even the first laser was recognized as being potentially dangerous. Theodore Maiman characterized the first laser as having a power of one "Gillette" as it could burn through one Gillette razor blade. Today, it is accepted that even low-power lasers with only a few milliwatts of output power can be hazardous to human eyesight, when the beam from such a laser hits the eye directly or after reflection from a shiny surface. At wavelengths which the cornea and the lens can focus well, the coherence and low divergence of laser light means that it can be focused by the eye into an extremely small spot on the retina, resulting in localized burning and permanent damage in seconds or even less time.

Lasers are usually labeled with a safety class number, which identifies how dangerous the laser is:

  • Class I/1 is inherently safe, usually because the light is contained in an enclosure, for example in CD players.
  • Class II/2 is safe during normal use; the blink reflex of the eye will prevent damage. Usually up to 1 mW power, for example laser pointers.
  • Class IIIa/3R lasers are usually up to 5 mW and involve a small risk of eye damage within the time of the blink reflex. Staring into such a beam for several seconds is likely to cause damage to a spot on the retina.
  • Class IIIb/3B can cause immediate eye damage upon exposure.
  • Class IV/4 lasers can burn skin, and in some cases, even scattered light can cause eye and/or skin damage. Many industrial and scientific lasers are in this class.

The indicated powers are for visible-light, continuous-wave lasers. For pulsed lasers and invisible wavelengths, other power limits apply. People working with class 3B and class 4 lasers can protect their eyes with safety goggles which are designed to absorb light of a particular wavelength.

Certain infrared lasers with wavelengths beyond about 1.4 micrometres are often referred to as being "eye-safe". This is because the intrinsic molecular vibrations of water molecules very strongly absorb light in this part of the spectrum, and thus a laser beam at these wavelengths is attenuated so completely as it passes through the eye's cornea that no light remains to be focused by the lens onto the retina. The label "eye-safe" can be misleading, however, as it only applies to relatively low power continuous wave beams; any high power or Q-switched laser at these wavelengths can burn the cornea, causing severe eye damage.

As weapons

Laser beams are famously employed as weapon systems in science fiction, but actual laser weapons are still in the experimental stage. The general idea of laser-beam weaponry is to hit a target with a train of brief pulses of light. The rapid evaporation and expansion of the surface causes shockwaves[ citation needed ] that damage the target. The power needed to project a high-powered laser beam of this kind is beyond the limit of current mobile power technology thus favoring chemically powered gas dynamic lasers.

Lasers of all but the lowest powers can potentially be used as incapacitating weapons, through their ability to produce temporary or permanent vision loss in varying degrees when aimed at the eyes. The degree, character, and duration of vision impairment caused by eye exposure to laser light varies with the power of the laser, the wavelength(s), the collimation of the beam, the exact orientation of the beam, and the duration of exposure. Lasers of even a fraction of a watt in power can produce immediate, permanent vision loss under certain conditions, making such lasers potential non-lethal but incapacitating weapons. The extreme handicap that laser-induced blindness represents makes the use of lasers even as non-lethal weapons morally controversial, and weapons designed to cause blindness have been banned by the Protocol on Blinding Laser Weapons. The U.S. Air Force is currently working on the Boeing YAL-1 airborne laser, mounted in a Boeing 747, to shoot down enemy ballistic missiles over enemy territory.

In the field of aviation, the hazards of exposure to ground-based lasers deliberately aimed at pilots have grown to the extent that aviation authorities have special procedures to deal with such hazards. [40]

On March 18, 2009 Northrop Grumman claimed that its engineers in Redondo Beach had successfully built and tested an electrically powered solid state laser capable of producing a 100-kilowatt beam, powerful enough to destroy an airplane. According to Brian Strickland, manager for the United States Army's Joint High Power Solid State Laser program, an electrically powered laser is capable of being mounted in an aircraft, ship, or other vehicle because it requires much less space for its supporting equipment than a chemical laser. [41] However the source of such a large electrical power in a mobile application remains unclear.

Fictional predictions

See also: Raygun

Several novelists described devices similar to lasers, prior to the discovery of stimulated emission:

  • A laser-like device was described in Alexey Tolstoy's science fiction novel The Hyperboloid of Engineer Garin in 1927.
  • Mikhail Bulgakov exaggerated the biological effect (laser bio stimulation) of intensive red light in his science fiction novel Fatal Eggs (1925), without any reasonable description of the source of this red light. (In that novel, the red light first appears occasionally from the illuminating system of an advanced microscope; then the protagonist Prof. Persikov arranges the special set-up for generation of the red light.)

See also

References

Notes:
  1. ^ a b Gould, R. Gordon (1959). "The LASER, Light Amplification by Stimulated Emission of Radiation". In Franken, P.A. and Sands, R.H. (Eds.). The Ann Arbor Conference on Optical Pumping, the University of Michigan, 15 June through 18 June 1959. p. 128. OCLC  02460155.
  2. ^ "laser". Reference.com. Retrieved 2008-05-15.
  3. ^ Conceptual physics, Paul Hewitt, 2002
  4. ^ "Schawlow and Townes invent the laser". Lucent Technologies. 1998. Retrieved 2006-10-24.
  5. ^ a b Chu, Steven; Townes, Charles (2003). "Arthur Schawlow". In Edward P. Lazear (ed.),. Biographical Memoirs. vol. 83. National Academy of Sciences. p. 202. ISBN  0-309-08699-X.
  6. ^ ""lase"". Dictionary.reference.com. Retrieved 2011-12-10.
  7. ^ G.P. Karman, G.S. McDonald?, G.H.C. New, J.P. Woerdman, " Laser Optics: Fractal modes in unstable resonators", Nature, Vol. 402, 138, 11 November 1999.
  8. ^ a b Steen, W. M. "Laser Materials Processing", 2nd Ed. 1998.
  9. ^ 581582 "Il rischio da laser: cosa è e come affrontarlo; analisi di un problema non così lontano da noi ("The risk from laser: what it is and what it is like facing it; analysis of a problem which is thus mot far away from us."), Programma Corso di Formazione Obbligatorio anno 2004, Dimitri Batani (Powerpoint presentation >7Mb)". wwwold.unimib.it. Retrieved January 1, 2007.
  10. ^ The Nobel Prize in Physics 1966 Presentation Speech by Professor Ivar Waller. Retrieved 1 January 2007.
  11. ^ Joan Lisa Bromberg, The Laser in America, 1950–1970 (1991), pp. 74–77 online
  12. ^ Maiman, T.H. (1960). "Stimulated optical radiation in ruby". Nature 187 (4736): 493–494. Bibcode 1960Natur.187..493M. doi: 10.1038/187493a0.
  13. ^ Townes, Charles Hard. "The first laser". University of Chicago. Retrieved 2008-05-15.
  14. ^ Hecht, Jeff (2005). Beam: The Race to Make the Laser. Oxford University Press. ISBN  0-19-514210-1.
  15. ^ Csele, Mark (2004). "The TEA Nitrogen Gas Laser". Homebuilt Lasers Page. Archived from the original on 2007-09-11. Retrieved 2007-09-15.
  16. ^ "Deep UV Lasers" (PDF). Photon Systems, Covina, Calif. Retrieved 2007-05-27.
  17. ^ Schuocker, D. (1998). Handbook of the Eurolaser Academy. Springer. ISBN  0412819104.
  18. ^ C. Stewen, M. Larionov, and A. Giesen, “Yb:YAG thin disk laser with 1 kW output power,” in OSA Trends in Optics and Photonics, Advanced Solid-State Lasers, H. Injeyan, U. Keller, and C. Marshall, ed. (Optical Society of America, Washington, DC., 2000) pp. 35-41.
  19. ^ Wu, X.; et al. (25 October 2004). "Ultraviolet photonic crystal laser". Applied Physics Letters 85 (17): 3657. arXiv: physics/0406005. Bibcode 2004ApPhL..85.3657W. doi: 10.1063/1.1808888.
  20. ^ "Picolight ships first 4-Gbit/s 1310-nm VCSEL transceivers", Laser Focus World, December 9, 2005, accessed 27 May 2006
  21. ^ F. J. Duarte, Tunable Laser Optics (Elsevier Academic, New York, 2003).
  22. ^ Palmer, Jason (2011-06-13). "Laser is produced by a living cell". BBC News. Retrieved 2011-06-13.
  23. ^ Malte C. Gather & Seok Hyun Yun (2011-06-12). "Single-cell biological lasers". Nature Photonics. Retrieved 2011-06-13.
  24. ^ a b Fildes, Jonathan (2007-09-12). "Mirror particles form new matter". BBC News. Retrieved 2008-05-22.
  25. ^ Hecht, Jeff (May 2008). "The history of the x-ray laser". Optics and Photonics News (Optical Society of America) 19 (5): 26–33.
  26. ^ Robinson, Clarence A. (1981). "Advance made on high-energy laser". Aviation Week & Space Technology (23 February 1981): 25–27.
  27. ^ Charles H. Townes (2003). "The first laser". In Laura Garwin and Tim Lincoln. A Century of Nature: Twenty-One Discoveries that Changed Science and the World. University of Chicago Press. pp. 107–12. ISBN  0-226-28413-1. Retrieved 2008-02-02.
  28. ^ Dalrymple BE, Duff JM, Menzel ER. Inherent fingerprint luminescence – detection by laser. Journal of Forensic Sciences, 22(1), 1977, 106-115
  29. ^ Dalrymple BE. Visible and infrared luminescence in documents : excitation by laser. Journal of Forensic Sciences, 28(3), 1983, 692-696
  30. ^ Kincade, Kathy and Stephen Anderson (2005) "Laser Marketplace 2005: Consumer applications boost laser sales 10%", Laser Focus World, vol. 41, no. 1. ( online)
  31. ^ Steele, Robert V. (2005) "Diode-laser market grows at a slower rate", Laser Focus World, vol. 41, no. 2. ( online)
  32. ^ "Green Laser 400 mW burn a box CD in 4 second". youtube.com. Retrieved 2011-12-10.
  33. ^ "Laser Diode Power Output Based on DVD-R/RW specs". elabz.com. Retrieved 2011-12-10.
  34. ^ George M. Peavy, " How to select a surgical veterinary laser", veterinary-laser.com. URL accessed 14 March 2008.
  35. ^ "Cascades™ Horizontal Stacked Arrayes". nlight.net. Retrieved March 17, 2011.
  36. ^ Heller, Arnie, " Orchestrating the world's most powerful laser." Science and Technology Review. Lawrence Livermore National Laboratory, July/August 2005. URL accessed 27 May 2006.
  37. ^ Schewe, Phillip F.; Stein, Ben (9 November 1998). "Physics News Update 401". American Institute of Physics. Retrieved 2008-03-15.
  38. ^ PowerLabs CO2 LASER! Sam Barros 21 June 2006. Retrieved 1 January 2007.
  39. ^ "Howto: Make a DVD Burner into a High-Powered Laser". Felesmagus.com. Retrieved 2011-12-10.
  40. ^ "Police fight back on laser threat". BBC News. 8 April 2009. Retrieved 4 April 2010.
  41. ^ Peter, Pae (March 19, 2009.). "Northrop Advance Brings Era Of The Laser Gun Closer". Los Angeles Times. p. B2.
Further reading
Books

External links

Wikimedia Commons has media related to: Lasers

View page ratings
Rate this page
Trustworthy
Objective
Complete
Well-written

A laser is a device that emits light (electromagnetic radiation) through a process of optical amplification based on the stimulated emission of photons. The term "laser" originated as an acronym for Light Amplification by Stimulated Emission of Radiation.[1][2] The emitted laser light is notable for its high degree of spatial and temporal coherence, unattainable using other technologies.

Spatial coherence typically is expressed through the output being a narrow beam which is diffraction-limited, often a so-called "pencil beam." Laser beams can be focused to very tiny spots, achieving a very high irradiance. Or they can be launched into a beam of very low divergence in order to concentrate their power at a large distance.

Temporal (or longitudinal) coherence implies a polarized wave at a single frequency whose phase is correlated over a relatively large distance (the coherence length) along the beam.[3] A beam produced by a thermal or other incoherent light source has an instantaneous amplitude and phase which vary randomly with respect to time and position, and thus a very short coherence length.

Most so-called "single wavelength" lasers actually produce radiation in several modes having slightly different frequencies (wavelengths), often not in a single polarization. And although temporal coherence implies monochromaticity, there are even lasers that emit a broad spectrum of light, or emit different wavelengths of light simultaneously. There are some lasers which are not single spatial mode and consequently their light beams diverge more than required by the diffraction limit. However all such devices are classified as "lasers" based on their method of producing that light: stimulated emission. Lasers are employed in applications where light of the required spatial or temporal coherence could not be produced using simpler technologies. Contents

1 Terminology 2 Design 3 Laser physics 3.1 Stimulated emission 3.2 Gain medium and cavity 3.3 The light emitted 3.4 Quantum vs. classical emission processes 4 Continuous and pulsed modes of operation 4.1 Continuous wave operation 4.2 Pulsed operation

        1. 2.1 Q-switching
        2. 2.2 Mode-locking
        3. 2.3 Pulsed pumping 5 History 5.1 Foundations 5.2 Maser 5.3 Laser 5.4 Recent innovations 6 Types and operating principles 6.1 Gas lasers
        1. 1.1 Chemical lasers
        2. 1.2 Excimer lasers 6.2 Solid-state lasers 6.3 Fiber lasers 6.4 Photonic crystal lasers 6.5 Semiconductor lasers 6.6 Dye lasers 6.7 Free electron lasers 6.8 Bio laser 6.9 Exotic laser media 7 Uses 7.1 Examples by power 7.2 Hobby uses 8 Safety 9 As weapons 10 Fictional predictions 11 See also 12 References 13 External links

Terminology Laser beams in fog, reflected on a car windshield

The word laser started as an acronym for "light amplification by stimulated emission of radiation"; in modern usage "light" broadly denotes electromagnetic radiation of any frequency, not only visible light, hence infrared laser, ultraviolet laser, X-ray laser, and so on. Because the microwave predecessor of the laser, the maser, was developed first, devices of this sort operating at microwave and radio frequencies are referred to as "masers" rather than "microwave lasers" or "radio lasers". In the early technical literature, especially at Bell Telephone Laboratories, the laser was called an optical maser; this term is now obsolete.[4]

A laser which produces light by itself is technically an optical oscillator rather than an optical amplifier as suggested by the acronym. It has been humorously noted that the acronym LOSER, for "light oscillation by stimulated emission of radiation," would have been more correct.[5] With the widespread use of the original acronym as a common noun, actual optical amplifiers have come to be referred to as "laser amplifiers", notwithstanding the apparent redundancy in that designation.

The back-formed verb to lase is frequently used in the field, meaning "to produce laser light,"[6] especially in reference to the gain medium of a laser; when a laser is operating it is said to be "lasing." Further use of the words laser and maser in an extended sense, not referring to laser technology or devices, can be seen in usages such as astrophysical maser and atom laser. Design Principal components: 1. Gain medium 2. Laser pumping energy 3. High reflector 4. Output coupler 5. Laser beam Main article: Laser construction

A laser consists of a gain medium inside a highly reflective optical cavity, as well as a means to supply energy to the gain medium. The gain medium is a material with properties that allow it to amplify light by stimulated emission. In its simplest form, a cavity consists of two mirrors arranged such that light bounces back and forth, each time passing through the gain medium. Typically one of the two mirrors, the output coupler, is partially transparent. The output laser beam is emitted through this mirror.

Light of a specific wavelength that passes through the gain medium is amplified (increases in power); the surrounding mirrors ensure that most of the light makes many passes through the gain medium, being amplified repeatedly. Part of the light that is between the mirrors (that is, within the cavity) passes through the partially transparent mirror and escapes as a beam of light.

The process of supplying the energy required for the amplification is called pumping. The energy is typically supplied as an electrical current or as light at a different wavelength. Such light may be provided by a flash lamp or perhaps another laser. Most practical lasers contain additional elements that affect properties such as the wavelength of the emitted light and the shape of the beam. Laser physics See also: Laser science

Electrons and how they interact with electromagnetic fields are important in our understanding of chemistry and physics. Stimulated emission

In the classical view, the energy of an electron orbiting an atomic nucleus is larger for orbits further from the nucleus of an atom. However, quantum mechanical effects force electrons to take on discrete positions in orbitals. Thus, electrons are found in specific energy levels of an atom, two of which are shown below: Stimulated Emission.svg

When an electron absorbs energy either from light (photons) or heat (phonons), it receives that incident quanta of energy. But transitions are only allowed in between discrete energy levels such as the two shown above. This leads to emission lines and absorption lines.

When an electron is excited from a lower to a higher energy level, it will not stay that way forever. An electron in an excited state may decay to a lower energy state which is not occupied, according to a particular time constant characterizing that transition. When such an electron decays without external influence, emitting a photon, that is called "spontaneous emission". The phase associated with the photon that is emitted is random. A material with many atoms in such an excited state may thus result in radiation which is very spectrally limited (centered around one wavelength of light), but the individual photons would have no common phase relationship and would emanate in random directions. This is the mechanism of fluorescence and thermal emission.

An external electromagnetic field at a frequency associated with a transition can affect the quantum mechanical state of the atom. As the electron in the atom makes a transition between two stationary states (neither of which shows a dipole field), it enters a transition state which does have a dipole field, and which acts like a small electric dipole, and this dipole oscillates at a characteristic frequency. In response to the external electric field at this frequency, the probability of the atom entering this transition state is greatly increased. Thus, the rate of transitions between two stationary states is enhanced beyond that due to spontaneous emission. Such a transition to the higher state is called absorption, and it destroys an incident photon (the photon's energy goes into powering the increased energy of the higher state). A transition from the higher to a lower energy state, however, produces an additional photon; this is the process of stimulated emission. Gain medium and cavity A helium-neon laser demonstration at the Kastler-Brossel Laboratory at Univ. Paris 6. The pink-orange glow running through the center of the tube is from the electric discharge which produces incoherent light, just as in a neon tube. This glowing plasma is excited and then acts as the gain medium through which the internal beam passes, as it is reflected between the two mirrors. Laser radiation output through the front mirror can be seen to produce a tiny (about 1mm in diameter) intense spot on the screen, to the right. Although it is a deep and pure red color, spots of laser light are so intense that cameras are typically overexposed and distort their color. Spectrum of a helium neon laser illustrating its very high spectral purity (limited by the measuring apparatus). The .002 nm bandwidth of the lasing medium is well over 10,000 times narrower than the spectral width of a light-emitting diode (whose spectrum is shown here for comparison), with the bandwidth of a single longitudinal mode being much narrower still.

The gain medium is excited by an external source of energy into an excited state. In most lasers this medium consists of population of atoms which have been excited into such a state by means of an outside light source, or a electrical field which supplies energy for atoms to absorb and be transformed into their excited states.

The gain medium of a laser is normally a material of controlled purity, size, concentration, and shape, which amplifies the beam by the process of stimulated emission described above. This material can be of any state: gas, liquid, solid, or plasma. The gain medium absorbs pump energy, which raises some electrons into higher-energy ("excited") quantum states. Particles can interact with light by either absorbing or emitting photons. Emission can be spontaneous or stimulated. In the latter case, the photon is emitted in the same direction as the light that is passing by. When the number of particles in one excited state exceeds the number of particles in some lower-energy state, population inversion is achieved and the amount of stimulated emission due to light that passes through is larger than the amount of absorption. Hence, the light is amplified. By itself, this makes an optical amplifier. When an optical amplifier is placed inside a resonant optical cavity, one obtains a laser.

In a few situations it is possible to obtain lasing with only a single pass of EM radiation through the gain medium, and this produces a laser beam without any need for a resonant or reflective cavity (see for example nitrogen laser). Thus, reflection in a resonant cavity is usually required for a laser, but is not absolutely necessary.

The optical resonator is sometimes referred to as an "optical cavity", but this is a misnomer: lasers use open resonators as opposed to the literal cavity that would be employed at microwave frequencies in a maser. The resonator typically consists of two mirrors between which a coherent beam of light travels in both directions, reflecting back on itself so that an average photon will pass through the gain medium repeatedly before it is emitted from the output aperture or lost to diffraction or absorption. If the gain (amplification) in the medium is larger than the resonator losses, then the power of the recirculating light can rise exponentially. But each stimulated emission event returns an atom from its excited state to the ground state, reducing the gain of the medium. With increasing beam power the net gain (gain times loss) reduces to unity and the gain medium is said to be saturated. In a continuous wave (CW) laser, the balance of pump power against gain saturation and cavity losses produces an equilibrium value of the laser power inside the cavity; this equilibrium determines the operating point of the laser. If the applied pump power is too small, the gain will never be sufficient to overcome the resonator losses, and laser light will not be produced. The minimum pump power needed to begin laser action is called the lasing threshold. The gain medium will amplify any photons passing through it, regardless of direction; but only the photons in a spatial mode supported by the resonator will pass more than once through the medium and receive substantial amplification. The light emitted

The light generated by stimulated emission is very similar to the input signal in terms of wavelength, phase, and polarization. This gives laser light its characteristic coherence, and allows it to maintain the uniform polarization and often monochromaticity established by the optical cavity design.

The beam in the cavity and the output beam of the laser, when travelling in free space (or a homogenous medium) rather than waveguides (as in an optical fiber laser), can be approximated as a Gaussian beam in most lasers; such beams exhibit the minimum divergence for a given diameter. However some high power lasers may be multimode, with the transverse modes often approximated using Hermite-Gaussian or Laguerre-Gaussian functions. It has been shown that unstable laser resonators (not used in most lasers) produce fractal shaped beams.[7] Near the beam "waist" (or focal region) it is highly collimated: the wavefronts are planar, normal to the direction of propagation, with no beam divergence at that point. However due to diffraction, that can only remain true well within the Rayleigh range. The beam of a single transverse mode (gaussian beam) laser eventually diverges at an angle which varies inversely with the beam diameter, as required by diffraction theory. Thus, the "pencil beam" directly generated by a common helium-neon laser would spread out to a size of perhaps 500 kilometers when shone on the Moon (from the distance of the earth). On the other hand the light from a semiconductor laser typically exits the tiny crystal with a large divergence: up to 50°. However even such a divergent beam can be transformed into a similarly collimated beam by means of a lens system, as is always included, for instance, in a laser pointer whose light originates from a laser diode. That is possible due to the light being of a single spatial mode. This unique property of laser light, spatial coherence, cannot be replicated using standard light sources (except by discarding most of the light) as can be appreciated by comparing the beam from a flashlight (torch) or spotlight to that of almost any laser. Quantum vs. classical emission processes

The mechanism of producing radiation in a laser relies on stimulated emission, where energy is extracted from a transition in an atom or molecule. This is a quantum phenomenon discovered by Einstein who derived the relationship between the A coefficient describing spontaneous emission and the B coefficient which applies to absorption and stimulated emission. However in the case of the free electron laser, atomic energy levels are not involved; it appears that the operation of this rather exotic device can be explained without reference to quantum mechanics. Continuous and pulsed modes of operation

A laser can be classified as operating in either continuous or pulsed mode, depending on whether the power output is essentially continuous over time or whether its output takes the form of pulses of light on one or another time scale. Of course even a laser whose output is normally continuous can be intentionally turned on and off at some rate in order to create pulses of light. When the modulation rate is on time scales much slower than the cavity lifetime and the time period over which energy can be stored in the lasing medium or pumping mechanism, then it is still classified as a "modulated" or "pulsed" continuous wave laser. Most laser diodes used in communication systems fall in that category. Continuous wave operation

Some applications of lasers depend on a beam whose output power is constant over time. Such a laser is known as continuous wave (CW). Many types of lasers can be made to operate in continuous wave mode to satisfy such an application. Many of these lasers actually lase in several longitudinal modes at the same time, and beats between the slightly different optical frequencies of those oscillations will in fact produce amplitude variations on time scales shorter than the round-trip time (the reciprocal of the frequency spacing between modes), typically a few nanoseconds or less. In most cases these lasers are still termed "continuous wave" as their output power is steady when averaged over any longer time periods, with the very high frequency power variations having little or no impact in the intended application. (However the term is not applied to mode-locked lasers, where the intention is to create very short pulses at the rate of the round-trip time).

For continuous wave operation it is required for the population inversion of the gain medium to be continually replenished by a steady pump source. In some lasing media this is impossible. In some other lasers it would require pumping the laser at a very high continuous power level which would be impractical or destroy the laser by producing excessive heat. Such lasers cannot be run in CW mode. Pulsed operation

Pulsed operation of lasers refers to any laser not classified as continuous wave, so that the optical power appears in pulses of some duration at some repetition rate. This encompasses a wide range of technologies addressing a number of different motivations. Some lasers are pulsed simply because they cannot be run in continuous mode.

In other cases the application requires the production of pulses having as large an energy as possible. Since the pulse energy is equal to the average power divided by the repetition rate, this goal can sometimes be satisfied by lowering the rate of pulses so that more energy can be built up in between pulses. In laser ablation for example, a small volume of material at the surface of a work piece can be evaporated if it is heated in a very short time, whereas supplying the energy gradually would allow for the heat to be absorbed into the bulk of the piece, never attaining a sufficiently high temperature at a particular point.

Other applications rely on the peak pulse power (rather than the energy in the pulse), especially in order to obtain nonlinear optical effects. For a given pulse energy, this requires creating pulses of the shortest possible duration utilizing techniques such as Q-switching.

The optical bandwidth of a pulse cannot be narrower than the reciprocal of the pulse width. In the case of extremely short pulses, that implies lasing over a considerable bandwidth, quite contrary to the very narrow bandwidths typical of CW lasers. The lasing medium in some dye lasers and vibronic solid-state lasers produces optical gain over a wide bandwidth, making a laser possible which can thus generate pulses of light as short as a few femtoseconds (10−15 s). Q-switching Main article: Q-switching

In a Q-switched laser, the population inversion is allowed to build up by introducing loss inside the resonator which exceeds the gain of the medium; this can also be described as a reduction of the quality factor or 'Q' of the cavity. Then, after the pump energy stored in the laser medium has approached the maximum possible level, the introduced loss mechanism (often an electro- or acousto-optical element) is rapidly removed (or that occurs by itself in a passive device), allowing lasing to begin which rapidly obtains the stored energy in the gain medium. This results in a short pulse incorporating that energy, and thus a high peak power. Mode-locking Main article: Mode-locking

A mode-locked laser is capable of emitting extremely short pulses on the order of tens of picoseconds down to less than 10 femtoseconds. These pulses will repeat at the round trip time, that is, the time that it takes light to complete one round trip between the mirrors comprising the resonator. Due to the Fourier limit (also known as energy-time uncertainty), a pulse of such short temporal length has a spectrum spread over a considerable bandwidth. Thus such a gain medium must have a gain bandwidth sufficiently broad to amplify those frequencies. An example of a suitable material is titanium-doped, artificially grown sapphire (Ti:sapphire) which has a very wide gain bandwidth and can thus produce pulses of only a few femtoseconds duration.

Such mode-locked lasers are a most versatile tool for researching processes occurring on extremely short time scales (known as femtosecond physics, femtosecond chemistry and ultrafast science), for maximizing the effect of nonlinearity in optical materials (e.g. in second-harmonic generation, parametric down-conversion, optical parametric oscillators and the like) due to the large peak power, and in ablation applications.[citation needed] Again, because of the extremely short pulse duration, such a laser will produce pulses which achieve an extremely high peak power. Pulsed pumping

Another method of achieving pulsed laser operation is to pump the laser material with a source that is itself pulsed, either through electronic charging in the case of flash lamps, or another laser which is already pulsed. Pulsed pumping was historically used with dye lasers where the inverted population lifetime of a dye molecule was so short that a high energy, fast pump was needed. The way to overcome this problem was to charge up large capacitors which are then switched to discharge through flashlamps, producing an intense flash. Pulsed pumping is also required for three-level lasers in which the lower energy level rapidly becomes highly populated preventing further lasing until those atoms relax to the ground state. These lasers, such as the excimer laser and the copper vapor laser, can never be operated in CW mode. History Foundations

In 1917, Albert Einstein established the theoretic foundations for the laser and the maser in the paper Zur Quantentheorie der Strahlung (On the Quantum Theory of Radiation); via a re-derivation of Max Planck’s law of radiation, conceptually based upon probability coefficients (Einstein coefficients) for the absorption, spontaneous emission, and stimulated emission of electromagnetic radiation; in 1928, Rudolf W. Ladenburg confirmed the existences of the phenomena of stimulated emission and negative absorption;[8] in 1939, Valentin A. Fabrikant predicted the use of stimulated emission to amplify “short” waves;[9] in 1947, Willis E. Lamb and R. C. Retherford found apparent stimulated emission in hydrogen spectra and effected the first demonstration of stimulated emission;[8] in 1950, Alfred Kastler (Nobel Prize for Physics 1966) proposed the method of optical pumping, experimentally confirmed, two years later, by Brossel, Kastler, and Winter.[10] Maser Main article: Maser Aleksandr Prokhorov

In 1953, Charles Hard Townes and graduate students James P. Gordon and Herbert J. Zeiger produced the first microwave amplifier, a device operating on similar principles to the laser, but amplifying microwave radiation rather than infrared or visible radiation. Townes's maser was incapable of continuous output.[citation needed] Meanwhile, in the Soviet Union, Nikolay Basov and Aleksandr Prokhorov were independently working on the quantum oscillator and solved the problem of continuous-output systems by using more than two energy levels. These gain media could release stimulated emissions between an excited state and a lower excited state, not the ground state, facilitating the maintenance of a population inversion. In 1955, Prokhorov and Basov suggested optical pumping of a multi-level system as a method for obtaining the population inversion, later a main method of laser pumping.

Townes reports that several eminent physicists — among them Niels Bohr, John von Neumann, Isidor Rabi, Polykarp Kusch, and Llewellyn Thomas — argued the maser violated Heisenberg's uncertainty principle and hence could not work.[1] In 1964 Charles H. Townes, Nikolay Basov, and Aleksandr Prokhorov shared the Nobel Prize in Physics, “for fundamental work in the field of quantum electronics, which has led to the construction of oscillators and amplifiers based on the maser–laser principle”. Laser

In 1957, Charles Hard Townes and Arthur Leonard Schawlow, then at Bell Labs, began a serious study of the infrared laser. As ideas developed, they abandoned infrared radiation to instead concentrate upon visible light. The concept originally was called an "optical maser". In 1958, Bell Labs filed a patent application for their proposed optical maser; and Schawlow and Townes submitted a manuscript of their theoretical calculations to the Physical Review, published that year in Volume 112, Issue No. 6. LASER notebook: First page of the notebook wherein Gordon Gould coined the LASER acronym, and described the technologic elements for constructing the device.

Simultaneously, at Columbia University, graduate student Gordon Gould was working on a doctoral thesis about the energy levels of excited thallium. When Gould and Townes met, they spoke of radiation emission, as a general subject; afterwards, in November 1957, Gould noted his ideas for a “laser”, including using an open resonator (later an essential laser-device component). Moreover, in 1958, Prokhorov independently proposed using an open resonator, the first published appearance (the USSR) of this idea. Elsewhere, in the U.S., Schawlow and Townes had agreed to an open-resonator laser design — apparently unaware of Prokhorov’s publications and Gould’s unpublished laser work.

At a conference in 1959, Gordon Gould published the term LASER in the paper The LASER, Light Amplification by Stimulated Emission of Radiation.[1][5] Gould’s linguistic intention was using the “-aser” word particle as a suffix — to accurately denote the spectrum of the light emitted by the LASER device; thus x-rays: xaser, ultraviolet: uvaser, et cetera; none established itself as a discrete term, although “raser” was briefly popular for denoting radio-frequency-emitting devices.

Gould’s notes included possible applications for a laser, such as spectrometry, interferometry, radar, and nuclear fusion. He continued developing the idea, and filed a patent application in April 1959. The U.S. Patent Office denied his application, and awarded a patent to Bell Labs, in 1960. That provoked a twenty-eight-year lawsuit, featuring scientific prestige and money as the stakes. Gould won his first minor patent in 1977, yet it was not until 1987 that he won the first significant patent lawsuit victory, when a Federal judge ordered the U.S. Patent Office to issue patents to Gould for the optically pumped and the gas discharge laser devices. The question of just how to assign credit for inventing the laser remains unresolved by historians.[11]

On May 16, 1960, Theodore H. Maiman operated the first functioning laser,[12][13] at Hughes Research Laboratories, Malibu, California, ahead of several research teams, including those of Townes, at Columbia University, Arthur Schawlow, at Bell Labs,[14] and Gould, at the TRG (Technical Research Group) company. Maiman’s functional laser used a solid-state flashlamp-pumped synthetic ruby crystal to produce red laser light, at 694 nanometres wavelength; however, the device only was capable of pulsed operation, because of its three-level pumping design scheme. Later in 1960, the Iranian physicist Ali Javan, and William R. Bennett, and Donald Herriott, constructed the first gas laser, using helium and neon that was capable of continuous operation in the infrared (U.S. Patent 3,149,290); later, Javan received the Albert Einstein Award in 1993. Basov and Javan proposed the semiconductor laser diode concept. In 1962, Robert N. Hall demonstrated the first laser diode device, made of gallium arsenide and emitted at 850 nm the near-infrared band of the spectrum. Later, in 1962, Nick Holonyak, Jr. demonstrated the first semiconductor laser with a visible emission. This first semiconductor laser could only be used in pulsed-beam operation, and when cooled to liquid nitrogen temperatures (77 K). In 1970, Zhores Alferov, in the USSR, and Izuo Hayashi and Morton Panish of Bell Telephone Laboratories also independently developed room-temperature, continual-operation diode lasers, using the heterojunction structure. Recent innovations Graph showing the history of maximum laser pulse intensity throughout the past 40 years.

Since the early period of laser history, laser research has produced a variety of improved and specialized laser types, optimized for different performance goals, including:

new wavelength bands maximum average output power maximum peak pulse energy maximum peak pulse power minimum output pulse duration maximum power efficiency minimum cost

and this research continues to this day.

Lasing without maintaining the medium excited into a population inversion[dubious – discuss] was discovered in 1992 in sodium gas and again in 1995 in rubidium gas by various international teams.[citation needed] This was accomplished by using an external maser to induce "optical transparency" in the medium by introducing and destructively interfering the ground electron transitions between two paths, so that the likelihood for the ground electrons to absorb any energy has been cancelled. Types and operating principles

For a more complete list of laser types see this list of laser types.

Wavelengths of commercially available lasers. Laser types with distinct laser lines are shown above the wavelength bar, while below are shown lasers that can emit in a wavelength range. The color codifies the type of laser material (see the figure description for more details). Gas lasers Main article: Gas laser

Following the invention of the HeNe? gas laser, many other gas discharges have been found to amplify light coherently. Gas lasers using many different gases have been built and used for many purposes. The helium-neon laser (HeNe?) is able to operate at a number of different wavelengths, however the vast majority are engineered to lase at 633 nm; these relatively low cost but highly coherent lasers are extremely common in optical research and educational laboratories. Commercial carbon dioxide (CO2) lasers can emit many hundreds of watts in a single spatial mode which can be concentrated into a tiny spot. This emission is in the thermal infrared at 10.6 µm; such lasers are regularly used in industry for cutting and welding. The efficiency of a CO2 laser is unusually high: over 10%. Argon-ion lasers can operate at a number of lasing transitions between 351 and 528.7 nm. Depending on the optical design one or more of these transitions can be lasing simultaneously; the most commonly used lines are 458 nm, 488 nm and 514.5 nm. A nitrogen transverse electrical discharge in gas at atmospheric pressure (TEA) laser is an inexpensive gas laser, often home-built by hobbyists, which produces rather incoherent UV light at 337.1 nm.[15] Metal ion lasers are gas lasers that generate deep ultraviolet wavelengths. Helium-silver (HeAg?) 224 nm and neon-copper (NeCu?) 248 nm are two examples. Like all low-pressure gas lasers, the gain media of these lasers have quite narrow oscillation linewidths, less than 3 GHz (0.5 picometers),[16] making them candidates for use in fluorescence suppressed Raman spectroscopy. Chemical lasers

Chemical lasers are powered by a chemical reaction permitting a large amount of energy to be released quickly. Such very high power lasers are especially of interest to the military, however continuous wave chemical lasers at very high power levels, fed by streams of gasses, have been developed and have some industrial applications. As examples, in the Hydrogen fluoride laser (2700-2900 nm) and the Deuterium fluoride laser (3800 nm) the reaction is the combination of hydrogen or deuterium gas with combustion products of ethylene in nitrogen trifluoride. Excimer lasers

Excimer lasers are a special sort of gas laser powered by an electric discharge in which the lasing medium is an excimer, or more precisely an exciplex in existing designs. These are molecules which can only exist with one atom in an excited electronic state. Once the molecule transfers its excitation energy to a photon, therefore, its atoms are no longer bound to each other and the molecule disintegrates. This drastically reduces the population of the lower energy state thus greatly facilitating a population inversion. Excimers currently used are all noble gas compounds; noble gasses are chemically inert and can only form compounds while in an excited state. Excimer lasers typically operate at ultraviolet wavelengths with major applicatons including semiconductor photolithography and LASIK eye surgery. Commonly used excimer molecules include ArF? (emission at 193 nm), KrCl? (222 nm), KrF? (248 nm), XeCl? (308 nm), and XeF? (351 nm).[17] The molecular fluorine laser, emitting at 157 nm in the vacuum ultraviolet is sometimes referred to as an excimer laser, however this appears to be a misnomer inasmuch as F2 is a stable compound. Solid-state lasers A frequency-doubled green laser pointer, showing internal construction. Two AAA cells and electronics power the laser module (lower diagram) This contains a powerful 808 nm IR diode laser that optically pumps a Nd:YVO4 crystal inside a laser cavity. That laser produces 1064 nm (infrared) light which is mainly confined inside the resonator. Also inside the laser cavity, however, is a non-linear KTP crystal which causes frequency doubling, resulting in green light at 532 nm. The front mirror is transparent to this visible wavelength which is then expanded and collimated using two lenses (in this particular design).

Solid-state lasers use a crystalline or glass rod which is "doped" with ions that provide the required energy states. For example, the first working laser was a ruby laser, made from ruby (chromium-doped corundum). The population inversion is actually maintained in the "dopant", such as chromium or neodymium. These materials are pumped optically using a shorter wavelength than the lasing wavelength, often from a flashtube or from another laser.

It should be noted that "solid-state" in this sense refers to a crystal or glass, but this usage is distinct from the designation of "solid-state electronics" in referring to semiconductors. Semiconductor lasers (laser diodes) are pumped electrically and are thus not referred to as solid-state lasers. The class of solid-state lasers would, however, properly include fiber lasers in which dopants in the glass lase under optical pumping. But in practice these are simply referred to as "fiber lasers" with "solid-state" reserved for lasers using a solid rod of such a material.

Neodymium is a common "dopant" in various solid-state laser crystals, including yttrium orthovanadate (Nd:YVO4), yttrium lithium fluoride (Nd:YLF) and yttrium aluminium garnet (Nd:YAG). All these lasers can produce high powers in the infrared spectrum at 1064 nm. They are used for cutting, welding and marking of metals and other materials, and also in spectroscopy and for pumping dye lasers.

These lasers are also commonly frequency doubled, tripled or quadrupled, in so-called "diode pumped solid state" or DPSS lasers. Under second, third, or fourth harmonic generation these produce 532 nm (green, visible), 355 nm and 266 nm (UV) beams. This is the technology behind the bright laser pointers particularly at green (532 nm) and other short visible wavelengths.

Ytterbium, holmium, thulium, and erbium are other common "dopants" in solid-state lasers. Ytterbium is used in crystals such as Yb:YAG, Yb:KGW, Yb:KYW, Yb:SYS, Yb:BOYS, Yb:CaF2, typically operating around 1020-1050 nm. They are potentially very efficient and high powered due to a small quantum defect. Extremely high powers in ultrashort pulses can be achieved with Yb:YAG. Holmium-doped YAG crystals emit at 2097 nm and form an efficient laser operating at infrared wavelengths strongly absorbed by water-bearing tissues. The Ho-YAG is usually operated in a pulsed mode, and passed through optical fiber surgical devices to resurface joints, remove rot from teeth, vaporize cancers, and pulverize kidney and gall stones.

Titanium-doped sapphire (Ti:sapphire) produces a highly tunable infrared laser, commonly used for spectroscopy. It is also notable for use as a mode-locked laser producing ultrashort pulses of extremely high peak power.

Thermal limitations in solid-state lasers arise from unconverted pump power that manifests itself as heat. This heat, when coupled with a high thermo-optic coefficient (dn/dT) can give rise to thermal lensing as well as reduced quantum efficiency. These types of issues can be overcome by another novel diode-pumped solid-state laser, the diode-pumped thin disk laser. The thermal limitations in this laser type are mitigated by using a laser medium geometry in which the thickness is much smaller than the diameter of the pump beam. This allows for a more even thermal gradient in the material. Thin disk lasers have been shown to produce up to kilowatt levels of power.[18] Fiber lasers Main article: Fiber laser

Solid-state lasers or laser amplifiers where the light is guided due to the total internal reflection in a single mode optical fiber are instead called fiber lasers. Guiding of light allows extremely long gain regions providing good cooling conditions; fibers have high surface area to volume ratio which allows efficient cooling. In addition, the fiber's waveguiding properties tend to reduce thermal distortion of the beam. Erbium and ytterbium ions are common active species in such lasers.

Quite often, the fiber laser is designed as a double-clad fiber. This type of fiber consists of a fiber core, an inner cladding and an outer cladding. The index of the three concentric layers is chosen so that the fiber core acts as a single-mode fiber for the laser emission while the outer cladding acts as a highly multimode core for the pump laser. This lets the pump propagate a large amount of power into and through the active inner core region, while still having a high numerical aperture (NA) to have easy launching conditions.

Pump light can be used more efficiently by creating a fiber disk laser, or a stack of such lasers.

Fiber lasers have a fundamental limit in that the intensity of the light in the fiber cannot be so high that optical nonlinearities induced by the local electric field strength can become dominant and prevent laser operation and/or lead to the material destruction of the fiber. This effect is called photodarkening. In bulk laser materials, the cooling is not so efficient, and it is difficult to separate the effects of photodarkening from the thermal effects, but the experiments in fibers show that the photodarkening can be attributed to the formation of long-living color centers.[citation needed] Photonic crystal lasers

Photonic crystal lasers are lasers based on nano-structures that provide the mode confinement and the density of optical states (DOS) structure required for the feedback to take place.[clarification needed] They are typical micrometre-sized[dubious – discuss] and tunable on the bands of the photonic crystals.[19][clarification needed] Semiconductor lasers A 5.6 mm 'closed can' commercial laser diode, probably from a CD or DVD player

Semiconductor lasers are diodes which are electrically pumped. Recombination of electrons and holes created by the applied current introduces optical gain. Reflection from the ends of the crystal form an optical resonator, although the resonator can be external to the semiconductor in some designs.

Commercial laser diodes emit at wavelengths from 375 nm to 3500 nm. Low to medium power laser diodes are used in laser printers and CD/DVD players. Laser diodes are also frequently used to optically pump other lasers with high efficiency. The highest power industrial laser diodes, with power up to 10 kW (70dBm)[citation needed], are used in industry for cutting and welding. External-cavity semiconductor lasers have a semiconductor active medium in a larger cavity. These devices can generate high power outputs with good beam quality, wavelength-tunable narrow-linewidth radiation, or ultrashort laser pulses.

Vertical cavity surface-emitting lasers (VCSELs) are semiconductor lasers whose emission direction is perpendicular to the surface of the wafer. VCSEL devices typically have a more circular output beam than conventional laser diodes, and potentially could be much cheaper to manufacture. As of 2005, only 850 nm VCSELs are widely available, with 1300 nm VCSELs beginning to be commercialized,[20] and 1550 nm devices an area of research. VECSELs are external-cavity VCSELs. Quantum cascade lasers are semiconductor lasers that have an active transition between energy sub-bands of an electron in a structure containing several quantum wells.

The development of a silicon laser is important in the field of optical computing. Silicon is the material of choice for integrated circuits, and so electronic and silicon photonic components (such as optical interconnects) could be fabricated on the same chip. Unfortunately, silicon is a difficult lasing material to deal with, since it has certain properties which block lasing. However, recently teams have produced silicon lasers through methods such as fabricating the lasing material from silicon and other semiconductor materials, such as indium(III) phosphide or gallium(III) arsenide, materials which allow coherent light to be produced from silicon. These are called hybrid silicon laser. Another type is a Raman laser, which takes advantage of Raman scattering to produce a laser from materials such as silicon. Dye lasers

Dye lasers use an organic dye as the gain medium. The wide gain spectrum of available dyes, or mixtures of dyes, allows these lasers to be highly tunable, or to produce very short-duration pulses (on the order of a few femtoseconds). Although these tunable lasers are mainly known in their liquid form, researchers have also demonstrated narrow-linewidth tunable emission in dispersive oscillator configurations incorporating solid-state dye gain media.[21] In their most prevalent form these solid state dye lasers use dye-doped polymers as laser media. Free electron lasers

Free electron lasers, or FELs, generate coherent, high power radiation, that is widely tunable, currently ranging in wavelength from microwaves, through terahertz radiation and infrared, to the visible spectrum, to soft X-rays. They have the widest frequency range of any laser type. While FEL beams share the same optical traits as other lasers, such as coherent radiation, FEL operation is quite different. Unlike gas, liquid, or solid-state lasers, which rely on bound atomic or molecular states, FELs use a relativistic electron beam as the lasing medium, hence the term free electron. Bio laser

Living cells can be genetically engineered to produce Green fluorescent protein (GFP). The GFP is used as the laser's "gain medium", where light amplification takes place. The cells are then placed between two tiny mirrors, just 20 millionths of a metre across, which acted as the "laser cavity" in which light could bounce many times through the cell. Upon bathing the cell with blue light, it could be seen to emit directed and intense green laser light.[22][23] Exotic laser media

In September 2007, the BBC News reported that there was speculation about the possibility of using positronium annihilation to drive a very powerful gamma ray laser.[24] Dr. David Cassidy of the University of California, Riverside proposed that a single such laser could be used to ignite a nuclear fusion reaction, replacing the banks of hundreds of lasers currently employed in inertial confinement fusion experiments.[24]

Space-based X-ray lasers pumped by a nuclear explosion have also been proposed as antimissile weapons.[25][26] Such devices would be one-shot weapons. Uses Lasers range in size from microscopic diode lasers (top) with numerous applications, to football field sized neodymium glass lasers (bottom) used for inertial confinement fusion, nuclear weapons research and other high energy density physics experiments. Main article: List of applications for lasers

When lasers were invented in 1960, they were called "a solution looking for a problem".[27] Since then, they have become ubiquitous, finding utility in thousands of highly varied applications in every section of modern society, including consumer electronics, information technology, science, medicine, industry, law enforcement, entertainment, and the military.

The first use of lasers in the daily lives of the general population was the supermarket barcode scanner, introduced in 1974. The laserdisc player, introduced in 1978, was the first successful consumer product to include a laser but the compact disc player was the first laser-equipped device to become common, beginning in 1982 followed shortly by laser printers.

Some other uses are:

Medicine: Bloodless surgery, laser healing, surgical treatment, kidney stone treatment, eye treatment, dentistry Industry: Cutting, welding, material heat treatment, marking parts, non-contact measurement of parts Military: Marking targets, guiding munitions, missile defence, electro-optical countermeasures (EOCM), alternative to radar, blinding troops. Law enforcement: used for latent fingerprint detection in the forensic identification field[28][29] Research: Spectroscopy, laser ablation, laser annealing, laser scattering, laser interferometry, LIDAR, laser capture microdissection, fluorescence microscopy Product development/commercial: laser printers, optical discs (e.g. CDs and the like), barcode scanners, thermometers, laser pointers, holograms, bubblegrams. Laser lighting displays: Laser light shows Cosmetic skin treatments: acne treatment, cellulite and striae reduction, and hair removal.

In 2004, excluding diode lasers, approximately 131,000 lasers were sold with a value of US$2.19 billion.[30] In the same year, approximately 733 million diode lasers, valued at $3.20 billion, were sold.[31] Examples by power Laser application in astronomical adaptive optics imaging

Different applications need lasers with different output powers. Lasers that produce a continuous beam or a series of short pulses can be compared on the basis of their average power. Lasers that produce pulses can also be characterized based on the peak power of each pulse. The peak power of a pulsed laser is many orders of magnitude greater than its average power. The average output power is always less than the power consumed. The continuous or average power required for some uses: Power Use 1-5 mW Laser pointers 5 mW CD-ROM drive 5–10 mW DVD player or DVD-ROM drive 100 mW High-speed CD-RW burner 250 mW Consumer 16x DVD-R burner 400 mW Burning through a jewel case including disk within 4 seconds[32] DVD 24x dual-layer recording.[33] 1 W Green laser in current Holographic Versatile Disc prototype development 1–20 W Output of the majority of commercially available solid-state lasers used for micro machining 30–100 W Typical sealed CO2 surgical lasers[34] 100–3000 W Typical sealed CO2 lasers used in industrial laser cutting 5 kW Output power achieved by a 1 cm diode laser bar[35] 100 kW Claimed output of a CO2 laser being developed by Northrop Grumman for military (weapon) applications

Examples of pulsed systems with high peak power:

700 TW (700×1012 W) – National Ignition Facility, a 192-beam, 1.8-megajoule laser system adjoining a 10-meter-diameter target chamber.[36] 1.3 PW (1.3×1015 W) – world's most powerful laser as of 1998, located at the Lawrence Livermore Laboratory[37]

Hobby uses

In recent years, some hobbyists have taken interests in lasers. Lasers used by hobbyists are generally of class IIIa or IIIb, although some have made their own class IV types.[38] However, compared to other hobbyists, laser hobbyists are far less common, due to the cost and potential dangers involved. Due to the cost of lasers, some hobbyists use inexpensive means to obtain lasers, such as salvaging laser diodes from broken DVD players (red), Blu-ray players (violet), or even higher power laser diodes from CD or DVD burners.[39]

Hobbyists also have been taking surplus pulsed lasers from retired military applications and modifying them for pulsed holography. Pulsed Ruby and pulsed YAG lasers have been used. Safety Warning symbol for lasers Laser warning label Main article: Laser safety

Even the first laser was recognized as being potentially dangerous. Theodore Maiman characterized the first laser as having a power of one "Gillette" as it could burn through one Gillette razor blade. Today, it is accepted that even low-power lasers with only a few milliwatts of output power can be hazardous to human eyesight, when the beam from such a laser hits the eye directly or after reflection from a shiny surface. At wavelengths which the cornea and the lens can focus well, the coherence and low divergence of laser light means that it can be focused by the eye into an extremely small spot on the retina, resulting in localized burning and permanent damage in seconds or even less time.

Lasers are usually labeled with a safety class number, which identifies how dangerous the laser is:

Class I/1 is inherently safe, usually because the light is contained in an enclosure, for example in CD players. Class II/2 is safe during normal use; the blink reflex of the eye will prevent damage. Usually up to 1 mW power, for example laser pointers. Class IIIa/3R lasers are usually up to 5 mW and involve a small risk of eye damage within the time of the blink reflex. Staring into such a beam for several seconds is likely to cause damage to a spot on the retina. Class IIIb/3B can cause immediate eye damage upon exposure. Class IV/4 lasers can burn skin, and in some cases, even scattered light can cause eye and/or skin damage. Many industrial and scientific lasers are in this class.

The indicated powers are for visible-light, continuous-wave lasers. For pulsed lasers and invisible wavelengths, other power limits apply. People working with class 3B and class 4 lasers can protect their eyes with safety goggles which are designed to absorb light of a particular wavelength.

Certain infrared lasers with wavelengths beyond about 1.4 micrometres are often referred to as being "eye-safe". This is because the intrinsic molecular vibrations of water molecules very strongly absorb light in this part of the spectrum, and thus a laser beam at these wavelengths is attenuated so completely as it passes through the eye's cornea that no light remains to be focused by the lens onto the retina. The label "eye-safe" can be misleading, however, as it only applies to relatively low power continuous wave beams; any high power or Q-switched laser at these wavelengths can burn the cornea, causing severe eye damage. As weapons

Laser beams are famously employed as weapon systems in science fiction, but actual laser weapons are still in the experimental stage. The general idea of laser-beam weaponry is to hit a target with a train of brief pulses of light. The rapid evaporation and expansion of the surface causes shockwaves[citation needed] that damage the target. The power needed to project a high-powered laser beam of this kind is beyond the limit of current mobile power technology thus favoring chemically powered gas dynamic lasers.

Lasers of all but the lowest powers can potentially be used as incapacitating weapons, through their ability to produce temporary or permanent vision loss in varying degrees when aimed at the eyes. The degree, character, and duration of vision impairment caused by eye exposure to laser light varies with the power of the laser, the wavelength(s), the collimation of the beam, the exact orientation of the beam, and the duration of exposure. Lasers of even a fraction of a watt in power can produce immediate, permanent vision loss under certain conditions, making such lasers potential non-lethal but incapacitating weapons. The extreme handicap that laser-induced blindness represents makes the use of lasers even as non-lethal weapons morally controversial, and weapons designed to cause blindness have been banned by the Protocol on Blinding Laser Weapons. The U.S. Air Force is currently working on the Boeing YAL-1 airborne laser, mounted in a Boeing 747, to shoot down enemy ballistic missiles over enemy territory.

In the field of aviation, the hazards of exposure to ground-based lasers deliberately aimed at pilots have grown to the extent that aviation authorities have special procedures to deal with such hazards.[40]

On March 18, 2009 Northrop Grumman claimed that its engineers in Redondo Beach had successfully built and tested an electrically powered solid state laser capable of producing a 100-kilowatt beam, powerful enough to destroy an airplane. According to Brian Strickland, manager for the United States Army's Joint High Power Solid State Laser program, an electrically powered laser is capable of being mounted in an aircraft, ship, or other vehicle because it requires much less space for its supporting equipment than a chemical laser.[41] However the source of such a large electrical power in a mobile application remains unclear. Fictional predictions See also: Raygun

Several novelists described devices similar to lasers, prior to the discovery of stimulated emission:

A laser-like device was described in Alexey Tolstoy's science fiction novel The Hyperboloid of Engineer Garin in 1927. Mikhail Bulgakov exaggerated the biological effect (laser bio stimulation) of intensive red light in his science fiction novel Fatal Eggs (1925), without any reasonable description of the source of this red light. (In that novel, the red light first appears occasionally from the illuminating system of an advanced microscope; then the protagonist Prof. Persikov arranges the special set-up for generation of the red light.)

See also

Bessel beam Coherent perfect absorber dazzler (weapon) Free-space optical communication Homogeneous broadening Induced gamma emission Injection seeder International Laser Display Association Laser accelerometer Lasers and aviation safety

Laser beam profiler Laser bonding Laser converting Laser cooling Laser engraving Laser medicine Laser scalpel 3D scanner Laser turntable Laser beam welding

List of laser articles List of light sources Mercury laser Nanolaser Reference beam Rytov number Sound Amplification by Stimulated Emission of Radiation SASER Selective laser sintering Spaser Speckle pattern Tophat beam

References

Notes

Our updated Terms of Use will become effective on May 25, 2012. Find out more. Laser From Wikipedia, the free encyclopedia Jump to: navigation, search For other uses, see Laser (disambiguation). Page semi-protected United States Air Force laser experiment Red (635 nm), green (532 nm), and blue-violet (445 nm) lasers

A laser is a device that emits light (electromagnetic radiation) through a process of optical amplification based on the stimulated emission of photons. The term "laser" originated as an acronym for Light Amplification by Stimulated Emission of Radiation.[1][2] The emitted laser light is notable for its high degree of spatial and temporal coherence, unattainable using other technologies.

Spatial coherence typically is expressed through the output being a narrow beam which is diffraction-limited, often a so-called "pencil beam." Laser beams can be focused to very tiny spots, achieving a very high irradiance. Or they can be launched into a beam of very low divergence in order to concentrate their power at a large distance.

Temporal (or longitudinal) coherence implies a polarized wave at a single frequency whose phase is correlated over a relatively large distance (the coherence length) along the beam.[3] A beam produced by a thermal or other incoherent light source has an instantaneous amplitude and phase which vary randomly with respect to time and position, and thus a very short coherence length.

Most so-called "single wavelength" lasers actually produce radiation in several modes having slightly different frequencies (wavelengths), often not in a single polarization. And although temporal coherence implies monochromaticity, there are even lasers that emit a broad spectrum of light, or emit different wavelengths of light simultaneously. There are some lasers which are not single spatial mode and consequently their light beams diverge more than required by the diffraction limit. However all such devices are classified as "lasers" based on their method of producing that light: stimulated emission. Lasers are employed in applications where light of the required spatial or temporal coherence could not be produced using simpler technologies. Contents

1 Terminology 2 Design 3 Laser physics 3.1 Stimulated emission 3.2 Gain medium and cavity 3.3 The light emitted 3.4 Quantum vs. classical emission processes 4 Continuous and pulsed modes of operation 4.1 Continuous wave operation 4.2 Pulsed operation

        1. 2.1 Q-switching
        2. 2.2 Mode-locking
        3. 2.3 Pulsed pumping 5 History 5.1 Foundations 5.2 Maser 5.3 Laser 5.4 Recent innovations 6 Types and operating principles 6.1 Gas lasers
        1. 1.1 Chemical lasers
        2. 1.2 Excimer lasers 6.2 Solid-state lasers 6.3 Fiber lasers 6.4 Photonic crystal lasers 6.5 Semiconductor lasers 6.6 Dye lasers 6.7 Free electron lasers 6.8 Bio laser 6.9 Exotic laser media 7 Uses 7.1 Examples by power 7.2 Hobby uses 8 Safety 9 As weapons 10 Fictional predictions 11 See also 12 References 13 External links

Terminology Laser beams in fog, reflected on a car windshield

The word laser started as an acronym for "light amplification by stimulated emission of radiation"; in modern usage "light" broadly denotes electromagnetic radiation of any frequency, not only visible light, hence infrared laser, ultraviolet laser, X-ray laser, and so on. Because the microwave predecessor of the laser, the maser, was developed first, devices of this sort operating at microwave and radio frequencies are referred to as "masers" rather than "microwave lasers" or "radio lasers". In the early technical literature, especially at Bell Telephone Laboratories, the laser was called an optical maser; this term is now obsolete.[4]

A laser which produces light by itself is technically an optical oscillator rather than an optical amplifier as suggested by the acronym. It has been humorously noted that the acronym LOSER, for "light oscillation by stimulated emission of radiation," would have been more correct.[5] With the widespread use of the original acronym as a common noun, actual optical amplifiers have come to be referred to as "laser amplifiers", notwithstanding the apparent redundancy in that designation.

The back-formed verb to lase is frequently used in the field, meaning "to produce laser light,"[6] especially in reference to the gain medium of a laser; when a laser is operating it is said to be "lasing." Further use of the words laser and maser in an extended sense, not referring to laser technology or devices, can be seen in usages such as astrophysical maser and atom laser. Design Principal components: 1. Gain medium 2. Laser pumping energy 3. High reflector 4. Output coupler 5. Laser beam Main article: Laser construction

A laser consists of a gain medium inside a highly reflective optical cavity, as well as a means to supply energy to the gain medium. The gain medium is a material with properties that allow it to amplify light by stimulated emission. In its simplest form, a cavity consists of two mirrors arranged such that light bounces back and forth, each time passing through the gain medium. Typically one of the two mirrors, the output coupler, is partially transparent. The output laser beam is emitted through this mirror.

Light of a specific wavelength that passes through the gain medium is amplified (increases in power); the surrounding mirrors ensure that most of the light makes many passes through the gain medium, being amplified repeatedly. Part of the light that is between the mirrors (that is, within the cavity) passes through the partially transparent mirror and escapes as a beam of light.

The process of supplying the energy required for the amplification is called pumping. The energy is typically supplied as an electrical current or as light at a different wavelength. Such light may be provided by a flash lamp or perhaps another laser. Most practical lasers contain additional elements that affect properties such as the wavelength of the emitted light and the shape of the beam. Laser physics See also: Laser science

Electrons and how they interact with electromagnetic fields are important in our understanding of chemistry and physics. Stimulated emission

In the classical view, the energy of an electron orbiting an atomic nucleus is larger for orbits further from the nucleus of an atom. However, quantum mechanical effects force electrons to take on discrete positions in orbitals. Thus, electrons are found in specific energy levels of an atom, two of which are shown below: Stimulated Emission.svg

When an electron absorbs energy either from light (photons) or heat (phonons), it receives that incident quanta of energy. But transitions are only allowed in between discrete energy levels such as the two shown above. This leads to emission lines and absorption lines.

When an electron is excited from a lower to a higher energy level, it will not stay that way forever. An electron in an excited state may decay to a lower energy state which is not occupied, according to a particular time constant characterizing that transition. When such an electron decays without external influence, emitting a photon, that is called "spontaneous emission". The phase associated with the photon that is emitted is random. A material with many atoms in such an excited state may thus result in radiation which is very spectrally limited (centered around one wavelength of light), but the individual photons would have no common phase relationship and would emanate in random directions. This is the mechanism of fluorescence and thermal emission.

An external electromagnetic field at a frequency associated with a transition can affect the quantum mechanical state of the atom. As the electron in the atom makes a transition between two stationary states (neither of which shows a dipole field), it enters a transition state which does have a dipole field, and which acts like a small electric dipole, and this dipole oscillates at a characteristic frequency. In response to the external electric field at this frequency, the probability of the atom entering this transition state is greatly increased. Thus, the rate of transitions between two stationary states is enhanced beyond that due to spontaneous emission. Such a transition to the higher state is called absorption, and it destroys an incident photon (the photon's energy goes into powering the increased energy of the higher state). A transition from the higher to a lower energy state, however, produces an additional photon; this is the process of stimulated emission. Gain medium and cavity A helium-neon laser demonstration at the Kastler-Brossel Laboratory at Univ. Paris 6. The pink-orange glow running through the center of the tube is from the electric discharge which produces incoherent light, just as in a neon tube. This glowing plasma is excited and then acts as the gain medium through which the internal beam passes, as it is reflected between the two mirrors. Laser radiation output through the front mirror can be seen to produce a tiny (about 1mm in diameter) intense spot on the screen, to the right. Although it is a deep and pure red color, spots of laser light are so intense that cameras are typically overexposed and distort their color. Spectrum of a helium neon laser illustrating its very high spectral purity (limited by the measuring apparatus). The .002 nm bandwidth of the lasing medium is well over 10,000 times narrower than the spectral width of a light-emitting diode (whose spectrum is shown here for comparison), with the bandwidth of a single longitudinal mode being much narrower still.

The gain medium is excited by an external source of energy into an excited state. In most lasers this medium consists of population of atoms which have been excited into such a state by means of an outside light source, or a electrical field which supplies energy for atoms to absorb and be transformed into their excited states.

The gain medium of a laser is normally a material of controlled purity, size, concentration, and shape, which amplifies the beam by the process of stimulated emission described above. This material can be of any state: gas, liquid, solid, or plasma. The gain medium absorbs pump energy, which raises some electrons into higher-energy ("excited") quantum states. Particles can interact with light by either absorbing or emitting photons. Emission can be spontaneous or stimulated. In the latter case, the photon is emitted in the same direction as the light that is passing by. When the number of particles in one excited state exceeds the number of particles in some lower-energy state, population inversion is achieved and the amount of stimulated emission due to light that passes through is larger than the amount of absorption. Hence, the light is amplified. By itself, this makes an optical amplifier. When an optical amplifier is placed inside a resonant optical cavity, one obtains a laser.

In a few situations it is possible to obtain lasing with only a single pass of EM radiation through the gain medium, and this produces a laser beam without any need for a resonant or reflective cavity (see for example nitrogen laser). Thus, reflection in a resonant cavity is usually required for a laser, but is not absolutely necessary.

The optical resonator is sometimes referred to as an "optical cavity", but this is a misnomer: lasers use open resonators as opposed to the literal cavity that would be employed at microwave frequencies in a maser. The resonator typically consists of two mirrors between which a coherent beam of light travels in both directions, reflecting back on itself so that an average photon will pass through the gain medium repeatedly before it is emitted from the output aperture or lost to diffraction or absorption. If the gain (amplification) in the medium is larger than the resonator losses, then the power of the recirculating light can rise exponentially. But each stimulated emission event returns an atom from its excited state to the ground state, reducing the gain of the medium. With increasing beam power the net gain (gain times loss) reduces to unity and the gain medium is said to be saturated. In a continuous wave (CW) laser, the balance of pump power against gain saturation and cavity losses produces an equilibrium value of the laser power inside the cavity; this equilibrium determines the operating point of the laser. If the applied pump power is too small, the gain will never be sufficient to overcome the resonator losses, and laser light will not be produced. The minimum pump power needed to begin laser action is called the lasing threshold. The gain medium will amplify any photons passing through it, regardless of direction; but only the photons in a spatial mode supported by the resonator will pass more than once through the medium and receive substantial amplification. The light emitted

The light generated by stimulated emission is very similar to the input signal in terms of wavelength, phase, and polarization. This gives laser light its characteristic coherence, and allows it to maintain the uniform polarization and often monochromaticity established by the optical cavity design.

The beam in the cavity and the output beam of the laser, when travelling in free space (or a homogenous medium) rather than waveguides (as in an optical fiber laser), can be approximated as a Gaussian beam in most lasers; such beams exhibit the minimum divergence for a given diameter. However some high power lasers may be multimode, with the transverse modes often approximated using Hermite-Gaussian or Laguerre-Gaussian functions. It has been shown that unstable laser resonators (not used in most lasers) produce fractal shaped beams.[7] Near the beam "waist" (or focal region) it is highly collimated: the wavefronts are planar, normal to the direction of propagation, with no beam divergence at that point. However due to diffraction, that can only remain true well within the Rayleigh range. The beam of a single transverse mode (gaussian beam) laser eventually diverges at an angle which varies inversely with the beam diameter, as required by diffraction theory. Thus, the "pencil beam" directly generated by a common helium-neon laser would spread out to a size of perhaps 500 kilometers when shone on the Moon (from the distance of the earth). On the other hand the light from a semiconductor laser typically exits the tiny crystal with a large divergence: up to 50°. However even such a divergent beam can be transformed into a similarly collimated beam by means of a lens system, as is always included, for instance, in a laser pointer whose light originates from a laser diode. That is possible due to the light being of a single spatial mode. This unique property of laser light, spatial coherence, cannot be replicated using standard light sources (except by discarding most of the light) as can be appreciated by comparing the beam from a flashlight (torch) or spotlight to that of almost any laser. Quantum vs. classical emission processes

The mechanism of producing radiation in a laser relies on stimulated emission, where energy is extracted from a transition in an atom or molecule. This is a quantum phenomenon discovered by Einstein who derived the relationship between the A coefficient describing spontaneous emission and the B coefficient which applies to absorption and stimulated emission. However in the case of the free electron laser, atomic energy levels are not involved; it appears that the operation of this rather exotic device can be explained without reference to quantum mechanics. Continuous and pulsed modes of operation

A laser can be classified as operating in either continuous or pulsed mode, depending on whether the power output is essentially continuous over time or whether its output takes the form of pulses of light on one or another time scale. Of course even a laser whose output is normally continuous can be intentionally turned on and off at some rate in order to create pulses of light. When the modulation rate is on time scales much slower than the cavity lifetime and the time period over which energy can be stored in the lasing medium or pumping mechanism, then it is still classified as a "modulated" or "pulsed" continuous wave laser. Most laser diodes used in communication systems fall in that category. Continuous wave operation

Some applications of lasers depend on a beam whose output power is constant over time. Such a laser is known as continuous wave (CW). Many types of lasers can be made to operate in continuous wave mode to satisfy such an application. Many of these lasers actually lase in several longitudinal modes at the same time, and beats between the slightly different optical frequencies of those oscillations will in fact produce amplitude variations on time scales shorter than the round-trip time (the reciprocal of the frequency spacing between modes), typically a few nanoseconds or less. In most cases these lasers are still termed "continuous wave" as their output power is steady when averaged over any longer time periods, with the very high frequency power variations having little or no impact in the intended application. (However the term is not applied to mode-locked lasers, where the intention is to create very short pulses at the rate of the round-trip time).

For continuous wave operation it is required for the population inversion of the gain medium to be continually replenished by a steady pump source. In some lasing media this is impossible. In some other lasers it would require pumping the laser at a very high continuous power level which would be impractical or destroy the laser by producing excessive heat. Such lasers cannot be run in CW mode. Pulsed operation

Pulsed operation of lasers refers to any laser not classified as continuous wave, so that the optical power appears in pulses of some duration at some repetition rate. This encompasses a wide range of technologies addressing a number of different motivations. Some lasers are pulsed simply because they cannot be run in continuous mode.

In other cases the application requires the production of pulses having as large an energy as possible. Since the pulse energy is equal to the average power divided by the repetition rate, this goal can sometimes be satisfied by lowering the rate of pulses so that more energy can be built up in between pulses. In laser ablation for example, a small volume of material at the surface of a work piece can be evaporated if it is heated in a very short time, whereas supplying the energy gradually would allow for the heat to be absorbed into the bulk of the piece, never attaining a sufficiently high temperature at a particular point.

Other applications rely on the peak pulse power (rather than the energy in the pulse), especially in order to obtain nonlinear optical effects. For a given pulse energy, this requires creating pulses of the shortest possible duration utilizing techniques such as Q-switching.

The optical bandwidth of a pulse cannot be narrower than the reciprocal of the pulse width. In the case of extremely short pulses, that implies lasing over a considerable bandwidth, quite contrary to the very narrow bandwidths typical of CW lasers. The lasing medium in some dye lasers and vibronic solid-state lasers produces optical gain over a wide bandwidth, making a laser possible which can thus generate pulses of light as short as a few femtoseconds (10−15 s). Q-switching Main article: Q-switching

In a Q-switched laser, the population inversion is allowed to build up by introducing loss inside the resonator which exceeds the gain of the medium; this can also be described as a reduction of the quality factor or 'Q' of the cavity. Then, after the pump energy stored in the laser medium has approached the maximum possible level, the introduced loss mechanism (often an electro- or acousto-optical element) is rapidly removed (or that occurs by itself in a passive device), allowing lasing to begin which rapidly obtains the stored energy in the gain medium. This results in a short pulse incorporating that energy, and thus a high peak power. Mode-locking Main article: Mode-locking

A mode-locked laser is capable of emitting extremely short pulses on the order of tens of picoseconds down to less than 10 femtoseconds. These pulses will repeat at the round trip time, that is, the time that it takes light to complete one round trip between the mirrors comprising the resonator. Due to the Fourier limit (also known as energy-time uncertainty), a pulse of such short temporal length has a spectrum spread over a considerable bandwidth. Thus such a gain medium must have a gain bandwidth sufficiently broad to amplify those frequencies. An example of a suitable material is titanium-doped, artificially grown sapphire (Ti:sapphire) which has a very wide gain bandwidth and can thus produce pulses of only a few femtoseconds duration.

Such mode-locked lasers are a most versatile tool for researching processes occurring on extremely short time scales (known as femtosecond physics, femtosecond chemistry and ultrafast science), for maximizing the effect of nonlinearity in optical materials (e.g. in second-harmonic generation, parametric down-conversion, optical parametric oscillators and the like) due to the large peak power, and in ablation applications.[citation needed] Again, because of the extremely short pulse duration, such a laser will produce pulses which achieve an extremely high peak power. Pulsed pumping

Another method of achieving pulsed laser operation is to pump the laser material with a source that is itself pulsed, either through electronic charging in the case of flash lamps, or another laser which is already pulsed. Pulsed pumping was historically used with dye lasers where the inverted population lifetime of a dye molecule was so short that a high energy, fast pump was needed. The way to overcome this problem was to charge up large capacitors which are then switched to discharge through flashlamps, producing an intense flash. Pulsed pumping is also required for three-level lasers in which the lower energy level rapidly becomes highly populated preventing further lasing until those atoms relax to the ground state. These lasers, such as the excimer laser and the copper vapor laser, can never be operated in CW mode. History Foundations

In 1917, Albert Einstein established the theoretic foundations for the laser and the maser in the paper Zur Quantentheorie der Strahlung (On the Quantum Theory of Radiation); via a re-derivation of Max Planck’s law of radiation, conceptually based upon probability coefficients (Einstein coefficients) for the absorption, spontaneous emission, and stimulated emission of electromagnetic radiation; in 1928, Rudolf W. Ladenburg confirmed the existences of the phenomena of stimulated emission and negative absorption;[8] in 1939, Valentin A. Fabrikant predicted the use of stimulated emission to amplify “short” waves;[9] in 1947, Willis E. Lamb and R. C. Retherford found apparent stimulated emission in hydrogen spectra and effected the first demonstration of stimulated emission;[8] in 1950, Alfred Kastler (Nobel Prize for Physics 1966) proposed the method of optical pumping, experimentally confirmed, two years later, by Brossel, Kastler, and Winter.[10] Maser Main article: Maser Aleksandr Prokhorov

In 1953, Charles Hard Townes and graduate students James P. Gordon and Herbert J. Zeiger produced the first microwave amplifier, a device operating on similar principles to the laser, but amplifying microwave radiation rather than infrared or visible radiation. Townes's maser was incapable of continuous output.[citation needed] Meanwhile, in the Soviet Union, Nikolay Basov and Aleksandr Prokhorov were independently working on the quantum oscillator and solved the problem of continuous-output systems by using more than two energy levels. These gain media could release stimulated emissions between an excited state and a lower excited state, not the ground state, facilitating the maintenance of a population inversion. In 1955, Prokhorov and Basov suggested optical pumping of a multi-level system as a method for obtaining the population inversion, later a main method of laser pumping.

Townes reports that several eminent physicists — among them Niels Bohr, John von Neumann, Isidor Rabi, Polykarp Kusch, and Llewellyn Thomas — argued the maser violated Heisenberg's uncertainty principle and hence could not work.[1] In 1964 Charles H. Townes, Nikolay Basov, and Aleksandr Prokhorov shared the Nobel Prize in Physics, “for fundamental work in the field of quantum electronics, which has led to the construction of oscillators and amplifiers based on the maser–laser principle”. Laser

In 1957, Charles Hard Townes and Arthur Leonard Schawlow, then at Bell Labs, began a serious study of the infrared laser. As ideas developed, they abandoned infrared radiation to instead concentrate upon visible light. The concept originally was called an "optical maser". In 1958, Bell Labs filed a patent application for their proposed optical maser; and Schawlow and Townes submitted a manuscript of their theoretical calculations to the Physical Review, published that year in Volume 112, Issue No. 6. LASER notebook: First page of the notebook wherein Gordon Gould coined the LASER acronym, and described the technologic elements for constructing the device.

Simultaneously, at Columbia University, graduate student Gordon Gould was working on a doctoral thesis about the energy levels of excited thallium. When Gould and Townes met, they spoke of radiation emission, as a general subject; afterwards, in November 1957, Gould noted his ideas for a “laser”, including using an open resonator (later an essential laser-device component). Moreover, in 1958, Prokhorov independently proposed using an open resonator, the first published appearance (the USSR) of this idea. Elsewhere, in the U.S., Schawlow and Townes had agreed to an open-resonator laser design — apparently unaware of Prokhorov’s publications and Gould’s unpublished laser work.

At a conference in 1959, Gordon Gould published the term LASER in the paper The LASER, Light Amplification by Stimulated Emission of Radiation.[1][5] Gould’s linguistic intention was using the “-aser” word particle as a suffix — to accurately denote the spectrum of the light emitted by the LASER device; thus x-rays: xaser, ultraviolet: uvaser, et cetera; none established itself as a discrete term, although “raser” was briefly popular for denoting radio-frequency-emitting devices.

Gould’s notes included possible applications for a laser, such as spectrometry, interferometry, radar, and nuclear fusion. He continued developing the idea, and filed a patent application in April 1959. The U.S. Patent Office denied his application, and awarded a patent to Bell Labs, in 1960. That provoked a twenty-eight-year lawsuit, featuring scientific prestige and money as the stakes. Gould won his first minor patent in 1977, yet it was not until 1987 that he won the first significant patent lawsuit victory, when a Federal judge ordered the U.S. Patent Office to issue patents to Gould for the optically pumped and the gas discharge laser devices. The question of just how to assign credit for inventing the laser remains unresolved by historians.[11]

On May 16, 1960, Theodore H. Maiman operated the first functioning laser,[12][13] at Hughes Research Laboratories, Malibu, California, ahead of several research teams, including those of Townes, at Columbia University, Arthur Schawlow, at Bell Labs,[14] and Gould, at the TRG (Technical Research Group) company. Maiman’s functional laser used a solid-state flashlamp-pumped synthetic ruby crystal to produce red laser light, at 694 nanometres wavelength; however, the device only was capable of pulsed operation, because of its three-level pumping design scheme. Later in 1960, the Iranian physicist Ali Javan, and William R. Bennett, and Donald Herriott, constructed the first gas laser, using helium and neon that was capable of continuous operation in the infrared (U.S. Patent 3,149,290); later, Javan received the Albert Einstein Award in 1993. Basov and Javan proposed the semiconductor laser diode concept. In 1962, Robert N. Hall demonstrated the first laser diode device, made of gallium arsenide and emitted at 850 nm the near-infrared band of the spectrum. Later, in 1962, Nick Holonyak, Jr. demonstrated the first semiconductor laser with a visible emission. This first semiconductor laser could only be used in pulsed-beam operation, and when cooled to liquid nitrogen temperatures (77 K). In 1970, Zhores Alferov, in the USSR, and Izuo Hayashi and Morton Panish of Bell Telephone Laboratories also independently developed room-temperature, continual-operation diode lasers, using the heterojunction structure. Recent innovations Graph showing the history of maximum laser pulse intensity throughout the past 40 years.

Since the early period of laser history, laser research has produced a variety of improved and specialized laser types, optimized for different performance goals, including:

new wavelength bands maximum average output power maximum peak pulse energy maximum peak pulse power minimum output pulse duration maximum power efficiency minimum cost

and this research continues to this day.

Lasing without maintaining the medium excited into a population inversion[dubious – discuss] was discovered in 1992 in sodium gas and again in 1995 in rubidium gas by various international teams.[citation needed] This was accomplished by using an external maser to induce "optical transparency" in the medium by introducing and destructively interfering the ground electron transitions between two paths, so that the likelihood for the ground electrons to absorb any energy has been cancelled. Types and operating principles

For a more complete list of laser types see this list of laser types.

Wavelengths of commercially available lasers. Laser types with distinct laser lines are shown above the wavelength bar, while below are shown lasers that can emit in a wavelength range. The color codifies the type of laser material (see the figure description for more details). Gas lasers Main article: Gas laser

Following the invention of the HeNe? gas laser, many other gas discharges have been found to amplify light coherently. Gas lasers using many different gases have been built and used for many purposes. The helium-neon laser (HeNe?) is able to operate at a number of different wavelengths, however the vast majority are engineered to lase at 633 nm; these relatively low cost but highly coherent lasers are extremely common in optical research and educational laboratories. Commercial carbon dioxide (CO2) lasers can emit many hundreds of watts in a single spatial mode which can be concentrated into a tiny spot. This emission is in the thermal infrared at 10.6 µm; such lasers are regularly used in industry for cutting and welding. The efficiency of a CO2 laser is unusually high: over 10%. Argon-ion lasers can operate at a number of lasing transitions between 351 and 528.7 nm. Depending on the optical design one or more of these transitions can be lasing simultaneously; the most commonly used lines are 458 nm, 488 nm and 514.5 nm. A nitrogen transverse electrical discharge in gas at atmospheric pressure (TEA) laser is an inexpensive gas laser, often home-built by hobbyists, which produces rather incoherent UV light at 337.1 nm.[15] Metal ion lasers are gas lasers that generate deep ultraviolet wavelengths. Helium-silver (HeAg?) 224 nm and neon-copper (NeCu?) 248 nm are two examples. Like all low-pressure gas lasers, the gain media of these lasers have quite narrow oscillation linewidths, less than 3 GHz (0.5 picometers),[16] making them candidates for use in fluorescence suppressed Raman spectroscopy. Chemical lasers

Chemical lasers are powered by a chemical reaction permitting a large amount of energy to be released quickly. Such very high power lasers are especially of interest to the military, however continuous wave chemical lasers at very high power levels, fed by streams of gasses, have been developed and have some industrial applications. As examples, in the Hydrogen fluoride laser (2700-2900 nm) and the Deuterium fluoride laser (3800 nm) the reaction is the combination of hydrogen or deuterium gas with combustion products of ethylene in nitrogen trifluoride. Excimer lasers

Excimer lasers are a special sort of gas laser powered by an electric discharge in which the lasing medium is an excimer, or more precisely an exciplex in existing designs. These are molecules which can only exist with one atom in an excited electronic state. Once the molecule transfers its excitation energy to a photon, therefore, its atoms are no longer bound to each other and the molecule disintegrates. This drastically reduces the population of the lower energy state thus greatly facilitating a population inversion. Excimers currently used are all noble gas compounds; noble gasses are chemically inert and can only form compounds while in an excited state. Excimer lasers typically operate at ultraviolet wavelengths with major applicatons including semiconductor photolithography and LASIK eye surgery. Commonly used excimer molecules include ArF? (emission at 193 nm), KrCl? (222 nm), KrF? (248 nm), XeCl? (308 nm), and XeF? (351 nm).[17] The molecular fluorine laser, emitting at 157 nm in the vacuum ultraviolet is sometimes referred to as an excimer laser, however this appears to be a misnomer inasmuch as F2 is a stable compound. Solid-state lasers A frequency-doubled green laser pointer, showing internal construction. Two AAA cells and electronics power the laser module (lower diagram) This contains a powerful 808 nm IR diode laser that optically pumps a Nd:YVO4 crystal inside a laser cavity. That laser produces 1064 nm (infrared) light which is mainly confined inside the resonator. Also inside the laser cavity, however, is a non-linear KTP crystal which causes frequency doubling, resulting in green light at 532 nm. The front mirror is transparent to this visible wavelength which is then expanded and collimated using two lenses (in this particular design).

Solid-state lasers use a crystalline or glass rod which is "doped" with ions that provide the required energy states. For example, the first working laser was a ruby laser, made from ruby (chromium-doped corundum). The population inversion is actually maintained in the "dopant", such as chromium or neodymium. These materials are pumped optically using a shorter wavelength than the lasing wavelength, often from a flashtube or from another laser.

It should be noted that "solid-state" in this sense refers to a crystal or glass, but this usage is distinct from the designation of "solid-state electronics" in referring to semiconductors. Semiconductor lasers (laser diodes) are pumped electrically and are thus not referred to as solid-state lasers. The class of solid-state lasers would, however, properly include fiber lasers in which dopants in the glass lase under optical pumping. But in practice these are simply referred to as "fiber lasers" with "solid-state" reserved for lasers using a solid rod of such a material.

Neodymium is a common "dopant" in various solid-state laser crystals, including yttrium orthovanadate (Nd:YVO4), yttrium lithium fluoride (Nd:YLF) and yttrium aluminium garnet (Nd:YAG). All these lasers can produce high powers in the infrared spectrum at 1064 nm. They are used for cutting, welding and marking of metals and other materials, and also in spectroscopy and for pumping dye lasers.

These lasers are also commonly frequency doubled, tripled or quadrupled, in so-called "diode pumped solid state" or DPSS lasers. Under second, third, or fourth harmonic generation these produce 532 nm (green, visible), 355 nm and 266 nm (UV) beams. This is the technology behind the bright laser pointers particularly at green (532 nm) and other short visible wavelengths.

Ytterbium, holmium, thulium, and erbium are other common "dopants" in solid-state lasers. Ytterbium is used in crystals such as Yb:YAG, Yb:KGW, Yb:KYW, Yb:SYS, Yb:BOYS, Yb:CaF2, typically operating around 1020-1050 nm. They are potentially very efficient and high powered due to a small quantum defect. Extremely high powers in ultrashort pulses can be achieved with Yb:YAG. Holmium-doped YAG crystals emit at 2097 nm and form an efficient laser operating at infrared wavelengths strongly absorbed by water-bearing tissues. The Ho-YAG is usually operated in a pulsed mode, and passed through optical fiber surgical devices to resurface joints, remove rot from teeth, vaporize cancers, and pulverize kidney and gall stones.

Titanium-doped sapphire (Ti:sapphire) produces a highly tunable infrared laser, commonly used for spectroscopy. It is also notable for use as a mode-locked laser producing ultrashort pulses of extremely high peak power.

Thermal limitations in solid-state lasers arise from unconverted pump power that manifests itself as heat. This heat, when coupled with a high thermo-optic coefficient (dn/dT) can give rise to thermal lensing as well as reduced quantum efficiency. These types of issues can be overcome by another novel diode-pumped solid-state laser, the diode-pumped thin disk laser. The thermal limitations in this laser type are mitigated by using a laser medium geometry in which the thickness is much smaller than the diameter of the pump beam. This allows for a more even thermal gradient in the material. Thin disk lasers have been shown to produce up to kilowatt levels of power.[18] Fiber lasers Main article: Fiber laser

Solid-state lasers or laser amplifiers where the light is guided due to the total internal reflection in a single mode optical fiber are instead called fiber lasers. Guiding of light allows extremely long gain regions providing good cooling conditions; fibers have high surface area to volume ratio which allows efficient cooling. In addition, the fiber's waveguiding properties tend to reduce thermal distortion of the beam. Erbium and ytterbium ions are common active species in such lasers.

Quite often, the fiber laser is designed as a double-clad fiber. This type of fiber consists of a fiber core, an inner cladding and an outer cladding. The index of the three concentric layers is chosen so that the fiber core acts as a single-mode fiber for the laser emission while the outer cladding acts as a highly multimode core for the pump laser. This lets the pump propagate a large amount of power into and through the active inner core region, while still having a high numerical aperture (NA) to have easy launching conditions.

Pump light can be used more efficiently by creating a fiber disk laser, or a stack of such lasers.

Fiber lasers have a fundamental limit in that the intensity of the light in the fiber cannot be so high that optical nonlinearities induced by the local electric field strength can become dominant and prevent laser operation and/or lead to the material destruction of the fiber. This effect is called photodarkening. In bulk laser materials, the cooling is not so efficient, and it is difficult to separate the effects of photodarkening from the thermal effects, but the experiments in fibers show that the photodarkening can be attributed to the formation of long-living color centers.[citation needed] Photonic crystal lasers

Photonic crystal lasers are lasers based on nano-structures that provide the mode confinement and the density of optical states (DOS) structure required for the feedback to take place.[clarification needed] They are typical micrometre-sized[dubious – discuss] and tunable on the bands of the photonic crystals.[19][clarification needed] Semiconductor lasers A 5.6 mm 'closed can' commercial laser diode, probably from a CD or DVD player

Semiconductor lasers are diodes which are electrically pumped. Recombination of electrons and holes created by the applied current introduces optical gain. Reflection from the ends of the crystal form an optical resonator, although the resonator can be external to the semiconductor in some designs.

Commercial laser diodes emit at wavelengths from 375 nm to 3500 nm. Low to medium power laser diodes are used in laser printers and CD/DVD players. Laser diodes are also frequently used to optically pump other lasers with high efficiency. The highest power industrial laser diodes, with power up to 10 kW (70dBm)[citation needed], are used in industry for cutting and welding. External-cavity semiconductor lasers have a semiconductor active medium in a larger cavity. These devices can generate high power outputs with good beam quality, wavelength-tunable narrow-linewidth radiation, or ultrashort laser pulses.

Vertical cavity surface-emitting lasers (VCSELs) are semiconductor lasers whose emission direction is perpendicular to the surface of the wafer. VCSEL devices typically have a more circular output beam than conventional laser diodes, and potentially could be much cheaper to manufacture. As of 2005, only 850 nm VCSELs are widely available, with 1300 nm VCSELs beginning to be commercialized,[20] and 1550 nm devices an area of research. VECSELs are external-cavity VCSELs. Quantum cascade lasers are semiconductor lasers that have an active transition between energy sub-bands of an electron in a structure containing several quantum wells.

The development of a silicon laser is important in the field of optical computing. Silicon is the material of choice for integrated circuits, and so electronic and silicon photonic components (such as optical interconnects) could be fabricated on the same chip. Unfortunately, silicon is a difficult lasing material to deal with, since it has certain properties which block lasing. However, recently teams have produced silicon lasers through methods such as fabricating the lasing material from silicon and other semiconductor materials, such as indium(III) phosphide or gallium(III) arsenide, materials which allow coherent light to be produced from silicon. These are called hybrid silicon laser. Another type is a Raman laser, which takes advantage of Raman scattering to produce a laser from materials such as silicon. Dye lasers

Dye lasers use an organic dye as the gain medium. The wide gain spectrum of available dyes, or mixtures of dyes, allows these lasers to be highly tunable, or to produce very short-duration pulses (on the order of a few femtoseconds). Although these tunable lasers are mainly known in their liquid form, researchers have also demonstrated narrow-linewidth tunable emission in dispersive oscillator configurations incorporating solid-state dye gain media.[21] In their most prevalent form these solid state dye lasers use dye-doped polymers as laser media. Free electron lasers

Free electron lasers, or FELs, generate coherent, high power radiation, that is widely tunable, currently ranging in wavelength from microwaves, through terahertz radiation and infrared, to the visible spectrum, to soft X-rays. They have the widest frequency range of any laser type. While FEL beams share the same optical traits as other lasers, such as coherent radiation, FEL operation is quite different. Unlike gas, liquid, or solid-state lasers, which rely on bound atomic or molecular states, FELs use a relativistic electron beam as the lasing medium, hence the term free electron. Bio laser

Living cells can be genetically engineered to produce Green fluorescent protein (GFP). The GFP is used as the laser's "gain medium", where light amplification takes place. The cells are then placed between two tiny mirrors, just 20 millionths of a metre across, which acted as the "laser cavity" in which light could bounce many times through the cell. Upon bathing the cell with blue light, it could be seen to emit directed and intense green laser light.[22][23] Exotic laser media

In September 2007, the BBC News reported that there was speculation about the possibility of using positronium annihilation to drive a very powerful gamma ray laser.[24] Dr. David Cassidy of the University of California, Riverside proposed that a single such laser could be used to ignite a nuclear fusion reaction, replacing the banks of hundreds of lasers currently employed in inertial confinement fusion experiments.[24]

Space-based X-ray lasers pumped by a nuclear explosion have also been proposed as antimissile weapons.[25][26] Such devices would be one-shot weapons. Uses Lasers range in size from microscopic diode lasers (top) with numerous applications, to football field sized neodymium glass lasers (bottom) used for inertial confinement fusion, nuclear weapons research and other high energy density physics experiments. Main article: List of applications for lasers

When lasers were invented in 1960, they were called "a solution looking for a problem".[27] Since then, they have become ubiquitous, finding utility in thousands of highly varied applications in every section of modern society, including consumer electronics, information technology, science, medicine, industry, law enforcement, entertainment, and the military.

The first use of lasers in the daily lives of the general population was the supermarket barcode scanner, introduced in 1974. The laserdisc player, introduced in 1978, was the first successful consumer product to include a laser but the compact disc player was the first laser-equipped device to become common, beginning in 1982 followed shortly by laser printers.

Some other uses are:

Medicine: Bloodless surgery, laser healing, surgical treatment, kidney stone treatment, eye treatment, dentistry Industry: Cutting, welding, material heat treatment, marking parts, non-contact measurement of parts Military: Marking targets, guiding munitions, missile defence, electro-optical countermeasures (EOCM), alternative to radar, blinding troops. Law enforcement: used for latent fingerprint detection in the forensic identification field[28][29] Research: Spectroscopy, laser ablation, laser annealing, laser scattering, laser interferometry, LIDAR, laser capture microdissection, fluorescence microscopy Product development/commercial: laser printers, optical discs (e.g. CDs and the like), barcode scanners, thermometers, laser pointers, holograms, bubblegrams. Laser lighting displays: Laser light shows Cosmetic skin treatments: acne treatment, cellulite and striae reduction, and hair removal.

In 2004, excluding diode lasers, approximately 131,000 lasers were sold with a value of US$2.19 billion.[30] In the same year, approximately 733 million diode lasers, valued at $3.20 billion, were sold.[31] Examples by power Laser application in astronomical adaptive optics imaging

Different applications need lasers with different output powers. Lasers that produce a continuous beam or a series of short pulses can be compared on the basis of their average power. Lasers that produce pulses can also be characterized based on the peak power of each pulse. The peak power of a pulsed laser is many orders of magnitude greater than its average power. The average output power is always less than the power consumed. The continuous or average power required for some uses: Power Use 1-5 mW Laser pointers 5 mW CD-ROM drive 5–10 mW DVD player or DVD-ROM drive 100 mW High-speed CD-RW burner 250 mW Consumer 16x DVD-R burner 400 mW Burning through a jewel case including disk within 4 seconds[32] DVD 24x dual-layer recording.[33] 1 W Green laser in current Holographic Versatile Disc prototype development 1–20 W Output of the majority of commercially available solid-state lasers used for micro machining 30–100 W Typical sealed CO2 surgical lasers[34] 100–3000 W Typical sealed CO2 lasers used in industrial laser cutting 5 kW Output power achieved by a 1 cm diode laser bar[35] 100 kW Claimed output of a CO2 laser being developed by Northrop Grumman for military (weapon) applications

Examples of pulsed systems with high peak power:

700 TW (700×1012 W) – National Ignition Facility, a 192-beam, 1.8-megajoule laser system adjoining a 10-meter-diameter target chamber.[36] 1.3 PW (1.3×1015 W) – world's most powerful laser as of 1998, located at the Lawrence Livermore Laboratory[37]

Hobby uses

In recent years, some hobbyists have taken interests in lasers. Lasers used by hobbyists are generally of class IIIa or IIIb, although some have made their own class IV types.[38] However, compared to other hobbyists, laser hobbyists are far less common, due to the cost and potential dangers involved. Due to the cost of lasers, some hobbyists use inexpensive means to obtain lasers, such as salvaging laser diodes from broken DVD players (red), Blu-ray players (violet), or even higher power laser diodes from CD or DVD burners.[39]

Hobbyists also have been taking surplus pulsed lasers from retired military applications and modifying them for pulsed holography. Pulsed Ruby and pulsed YAG lasers have been used. Safety Warning symbol for lasers Laser warning label Main article: Laser safety

Even the first laser was recognized as being potentially dangerous. Theodore Maiman characterized the first laser as having a power of one "Gillette" as it could burn through one Gillette razor blade. Today, it is accepted that even low-power lasers with only a few milliwatts of output power can be hazardous to human eyesight, when the beam from such a laser hits the eye directly or after reflection from a shiny surface. At wavelengths which the cornea and the lens can focus well, the coherence and low divergence of laser light means that it can be focused by the eye into an extremely small spot on the retina, resulting in localized burning and permanent damage in seconds or even less time.

Lasers are usually labeled with a safety class number, which identifies how dangerous the laser is:

Class I/1 is inherently safe, usually because the light is contained in an enclosure, for example in CD players. Class II/2 is safe during normal use; the blink reflex of the eye will prevent damage. Usually up to 1 mW power, for example laser pointers. Class IIIa/3R lasers are usually up to 5 mW and involve a small risk of eye damage within the time of the blink reflex. Staring into such a beam for several seconds is likely to cause damage to a spot on the retina. Class IIIb/3B can cause immediate eye damage upon exposure. Class IV/4 lasers can burn skin, and in some cases, even scattered light can cause eye and/or skin damage. Many industrial and scientific lasers are in this class.

The indicated powers are for visible-light, continuous-wave lasers. For pulsed lasers and invisible wavelengths, other power limits apply. People working with class 3B and class 4 lasers can protect their eyes with safety goggles which are designed to absorb light of a particular wavelength.

Certain infrared lasers with wavelengths beyond about 1.4 micrometres are often referred to as being "eye-safe". This is because the intrinsic molecular vibrations of water molecules very strongly absorb light in this part of the spectrum, and thus a laser beam at these wavelengths is attenuated so completely as it passes through the eye's cornea that no light remains to be focused by the lens onto the retina. The label "eye-safe" can be misleading, however, as it only applies to relatively low power continuous wave beams; any high power or Q-switched laser at these wavelengths can burn the cornea, causing severe eye damage. As weapons

Laser beams are famously employed as weapon systems in science fiction, but actual laser weapons are still in the experimental stage. The general idea of laser-beam weaponry is to hit a target with a train of brief pulses of light. The rapid evaporation and expansion of the surface causes shockwaves[citation needed] that damage the target. The power needed to project a high-powered laser beam of this kind is beyond the limit of current mobile power technology thus favoring chemically powered gas dynamic lasers.

Lasers of all but the lowest powers can potentially be used as incapacitating weapons, through their ability to produce temporary or permanent vision loss in varying degrees when aimed at the eyes. The degree, character, and duration of vision impairment caused by eye exposure to laser light varies with the power of the laser, the wavelength(s), the collimation of the beam, the exact orientation of the beam, and the duration of exposure. Lasers of even a fraction of a watt in power can produce immediate, permanent vision loss under certain conditions, making such lasers potential non-lethal but incapacitating weapons. The extreme handicap that laser-induced blindness represents makes the use of lasers even as non-lethal weapons morally controversial, and weapons designed to cause blindness have been banned by the Protocol on Blinding Laser Weapons. The U.S. Air Force is currently working on the Boeing YAL-1 airborne laser, mounted in a Boeing 747, to shoot down enemy ballistic missiles over enemy territory.

In the field of aviation, the hazards of exposure to ground-based lasers deliberately aimed at pilots have grown to the extent that aviation authorities have special procedures to deal with such hazards.[40]

On March 18, 2009 Northrop Grumman claimed that its engineers in Redondo Beach had successfully built and tested an electrically powered solid state laser capable of producing a 100-kilowatt beam, powerful enough to destroy an airplane. According to Brian Strickland, manager for the United States Army's Joint High Power Solid State Laser program, an electrically powered laser is capable of being mounted in an aircraft, ship, or other vehicle because it requires much less space for its supporting equipment than a chemical laser.[41] However the source of such a large electrical power in a mobile application remains unclear. Fictional predictions See also: Raygun

Several novelists described devices similar to lasers, prior to the discovery of stimulated emission:

A laser-like device was described in Alexey Tolstoy's science fiction novel The Hyperboloid of Engineer Garin in 1927. Mikhail Bulgakov exaggerated the biological effect (laser bio stimulation) of intensive red light in his science fiction novel Fatal Eggs (1925), without any reasonable description of the source of this red light. (In that novel, the red light first appears occasionally from the illuminating system of an advanced microscope; then the protagonist Prof. Persikov arranges the special set-up for generation of the red light.)

See also

Bessel beam Coherent perfect absorber dazzler (weapon) Free-space optical communication Homogeneous broadening Induced gamma emission Injection seeder International Laser Display Association Laser accelerometer Lasers and aviation safety

Laser beam profiler Laser bonding Laser converting Laser cooling Laser engraving Laser medicine Laser scalpel 3D scanner Laser turntable Laser beam welding

List of laser articles List of light sources Mercury laser Nanolaser Reference beam Rytov number Sound Amplification by Stimulated Emission of Radiation SASER Selective laser sintering Spaser Speckle pattern Tophat beam

References

Notes

^ a b Gould, R. Gordon (1959). "The LASER, Light Amplification by Stimulated Emission of Radiation". In Franken, P.A. and Sands, R.H. (Eds.). The Ann Arbor Conference on Optical Pumping, the University of Michigan, 15 June through 18 June 1959. p. 128. OCLC 02460155. ^ "laser". Reference.com. Retrieved 2008-05-15. ^ Conceptual physics, Paul Hewitt, 2002 ^ "Schawlow and Townes invent the laser". Lucent Technologies. 1998. Retrieved 2006-10-24. ^ a b Chu, Steven; Townes, Charles (2003). "Arthur Schawlow". In Edward P. Lazear (ed.),. Biographical Memoirs. vol. 83. National Academy of Sciences. p. 202. ISBN 0-309-08699-X. ^ ""lase"". Dictionary.reference.com. Retrieved 2011-12-10. ^ G.P. Karman, G.S. McDonald?, G.H.C. New, J.P. Woerdman, "Laser Optics: Fractal modes in unstable resonators", Nature, Vol. 402, 138, 11 November 1999. ^ a b Steen, W. M. "Laser Materials Processing", 2nd Ed. 1998. ^ (Italian) "Il rischio da laser: cosa è e come affrontarlo; analisi di un problema non così lontano da noi ("The risk from laser: what it is and what it is like facing it; analysis of a problem which is thus mot far away from us."), Programma Corso di Formazione Obbligatorio anno 2004, Dimitri Batani (Powerpoint presentation >7Mb)". wwwold.unimib.it. Retrieved January 1, 2007. ^ The Nobel Prize in Physics 1966 Presentation Speech by Professor Ivar Waller. Retrieved 1 January 2007. ^ Joan Lisa Bromberg, The Laser in America, 1950–1970 (1991), pp. 74–77 online ^ Maiman, T.H. (1960). "Stimulated optical radiation in ruby". Nature 187 (4736): 493–494. Bibcode 1960Natur.187..493M. doi:10.1038/187493a0. ^ Townes, Charles Hard. "The first laser". University of Chicago. Retrieved 2008-05-15. ^ Hecht, Jeff (2005). Beam: The Race to Make the Laser. Oxford University Press. ISBN 0-19-514210-1. ^ Csele, Mark (2004). "The TEA Nitrogen Gas Laser". Homebuilt Lasers Page. Archived from the original on 2007-09-11. Retrieved 2007-09-15. ^ "Deep UV Lasers" (PDF). Photon Systems, Covina, Calif. Retrieved 2007-05-27. ^ Schuocker, D. (1998). Handbook of the Eurolaser Academy. Springer. ISBN 0412819104. ^ C. Stewen, M. Larionov, and A. Giesen, “Yb:YAG thin disk laser with 1 kW output power,” in OSA Trends in Optics and Photonics, Advanced Solid-State Lasers, H. Injeyan, U. Keller, and C. Marshall, ed. (Optical Society of America, Washington, DC., 2000) pp. 35-41. ^ Wu, X.; et al. (25 October 2004). "Ultraviolet photonic crystal laser". Applied Physics Letters 85 (17): 3657. arXiv:physics/0406005. Bibcode 2004ApPhL..85.3657W. doi:10.1063/1.1808888. ^ "Picolight ships first 4-Gbit/s 1310-nm VCSEL transceivers", Laser Focus World, December 9, 2005, accessed 27 May 2006 ^ F. J. Duarte, Tunable Laser Optics (Elsevier Academic, New York, 2003). ^ Palmer, Jason (2011-06-13). "Laser is produced by a living cell". BBC News. Retrieved 2011-06-13. ^ Malte C. Gather & Seok Hyun Yun (2011-06-12). "Single-cell biological lasers". Nature Photonics. Retrieved 2011-06-13. ^ a b Fildes, Jonathan (2007-09-12). "Mirror particles form new matter". BBC News. Retrieved 2008-05-22. ^ Hecht, Jeff (May 2008). "The history of the x-ray laser". Optics and Photonics News (Optical Society of America) 19 (5): 26–33. ^ Robinson, Clarence A. (1981). "Advance made on high-energy laser". Aviation Week & Space Technology (23 February 1981): 25–27. ^ Charles H. Townes (2003). "The first laser". In Laura Garwin and Tim Lincoln. A Century of Nature: Twenty-One Discoveries that Changed Science and the World. University of Chicago Press. pp. 107–12. ISBN 0-226-28413-1. Retrieved 2008-02-02. ^ Dalrymple BE, Duff JM, Menzel ER. Inherent fingerprint luminescence – detection by laser. Journal of Forensic Sciences, 22(1), 1977, 106-115 ^ Dalrymple BE. Visible and infrared luminescence in documents : excitation by laser. Journal of Forensic Sciences, 28(3), 1983, 692-696 ^ Kincade, Kathy and Stephen Anderson (2005) "Laser Marketplace 2005: Consumer applications boost laser sales 10%", Laser Focus World, vol. 41, no. 1. (online) ^ Steele, Robert V. (2005) "Diode-laser market grows at a slower rate", Laser Focus World, vol. 41, no. 2. (online) ^ "Green Laser 400 mW burn a box CD in 4 second". youtube.com. Retrieved 2011-12-10. ^ "Laser Diode Power Output Based on DVD-R/RW specs". elabz.com. Retrieved 2011-12-10. ^ George M. Peavy, "How to select a surgical veterinary laser", veterinary-laser.com. URL accessed 14 March 2008. ^ "Cascades™ Horizontal Stacked Arrayes". nlight.net. Retrieved March 17, 2011. ^ Heller, Arnie, "Orchestrating the world's most powerful laser." Science and Technology Review. Lawrence Livermore National Laboratory, July/August 2005. URL accessed 27 May 2006. ^ Schewe, Phillip F.; Stein, Ben (9 November 1998). "Physics News Update 401". American Institute of Physics. Retrieved 2008-03-15. ^ PowerLabs? CO2 LASER! Sam Barros 21 June 2006. Retrieved 1 January 2007. ^ "Howto: Make a DVD Burner into a High-Powered Laser". Felesmagus.com. Retrieved 2011-12-10. ^ "Police fight back on laser threat". BBC News. 8 April 2009. Retrieved 4 April 2010. ^ Peter, Pae (March 19, 2009.). "Northrop Advance Brings Era Of The Laser Gun Closer". Los Angeles Times. p. B2.

Further reading Books

Bertolotti, Mario (1999, trans. 2004). The History of the Laser, Institute of Physics. ISBN 0-7503-0911-3 Csele, Mark (2004). Fundamentals of Light Sources and Lasers, Wiley. ISBN 0-471-47660-9 Koechner, Walter (1992). Solid-State Laser Engineering, 3rd ed., Springer-Verlag. ISBN 0-387-53756-2 Siegman, Anthony E. (1986). Lasers, University Science Books. ISBN 0-935702-11-3 Silfvast, William T. (1996). Laser Fundamentals, Cambridge University Press. ISBN 0-521-55617-1 Svelto, Orazio (1998). Principles of Lasers, 4th ed. (trans. David Hanna), Springer. ISBN 0-306-45748-2 Taylor, Nick (2000). LASER: The inventor, the Nobel laureate, and the thirty-year patent war. New York: Simon & Schuster. ISBN 0-684-83515-0. Wilson, J. & Hawkes, J.F.B. (1987). Lasers: Principles and Applications, Prentice Hall International Series in Optoelectronics, Prentice Hall. ISBN 0-13-523697-5 Yariv, Amnon (1989). Quantum Electronics, 3rd ed., Wiley. ISBN 0-471-60997-8 Bromberg, Joan Lisa (1991). The Laser in America, 1950-1970, MIT Press. ISBN 978-0-262-02318-4

Periodicals

Applied Physics B: Lasers and Optics (ISSN 0946-2171) IEEE Journal of Lightwave Technology (ISSN 0733-8724) IEEE Journal of Quantum Electronics (ISSN 0018-9197) IEEE Journal of Selected Topics in Quantum Electronics (ISSN 1077-260X) IEEE Photonics Technology Letters (ISSN 1041-1135) Journal of the Optical Society of America B: Optical Physics (ISSN 0740-3224) Laser Focus World (ISSN 0740-2511) Optics Letters (ISSN 0146-9592) Photonics Spectra (ISSN 0731-1230)

External links Wikimedia Commons has media related to: Lasers

Encyclopedia of laser physics and technology by Dr. Rüdiger Paschotta A Practical Guide to Lasers for Experimenters and Hobbyists by Samuel M. Goldwasser Homebuilt Lasers Page by Professor Mark Csele Powerful laser is 'brightest light in the universe' - The world's most powerful laser as of 2008 might create supernova-like shock waves and possibly even antimatter (New Scientist, 9 April 2008) Homemade laser project by Kip Kedersha "The Laser: basic principles" an online course by Prof. F. Balembois and Dr. S. Forget. Instrumentation for Optics, 2008 Northrop Grumman's Press Release on the Firestrike 15kw tactical laser product. Website on Lasers 50th anniversary by APS, OSA, SPIE Advancing the Laser anniversary site by SPIE: Video interviews, open-access articles, posters, DVDs Bright Idea: The First Lasers Free software for Simulation of random laser dynamics Video Demonstrations in Lasers and Optics Produced by the Massachusetts Institute of Technology (MIT). Real-time effects are demonstrated in a way that would be difficult to see in a classroom setting. Virtual Museum of Laser History, from the touring exhibit by SPIE

View page ratings Rate this page What's this? Trustworthy Objective Complete Well-written I am highly knowledgeable about this topic (optional) Categories:

Lasers Acronyms American inventions Directed-energy weapons Forensic equipment Orphan initialisms Photonics Quantum optics

Log in / create account

Article Talk

Read View source View history

Main page Contents Featured content Current events Random article Donate to Wikipedia

Interaction

Help About Wikipedia Community portal Recent changes Contact Wikipedia

Toolbox Print/export Languages

Afrikaans Ænglisc العربية Azərbaycanca Български Boarisch Bosanski Català Česky Cymraeg Dansk Deutsch Eesti Ελληνικά Español Esperanto فارسی Français Frysk Galego 贛語 ગુજરાતી 한국어 Հայերեն हिन्दी Hrvatski Bahasa Indonesia Italiano עברית Basa Jawa ქართული Қазақша Kreyòl ayisyen Latvie¨u Lietuvių Magyar Македонски മലയാളം Bahasa Melayu Nederlands 日本語 ‪Norsk (bokmål)‬ ‪Norsk (nynorsk)‬ Oʻzbek Polski Português Română Русиньскый Русский Seeltersk Shqip Sicilianu සිංහල Simple English Slovenčina Sloven¨čina Српски / Srpski Srpskohrvatski / Српскохрватски Suomi Svenska தமிழ் తెలుగు ไทย Türkçe Українська اردو ئۇيغۇرچە / Uyghurche Tiếng Việt Võro Winaray ייִדיש 粵語 中文

This page was last modified on 13 April 2012 at 03:52. Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. See Terms of use for details. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization. Contact us

Privacy policy About Wikipedia Disclaimers Mobile view

Wikimedia Foundation Powered by MediaWiki?

^ a b Gould, R. Gordon (1959). "The LASER, Light Amplification by Stimulated Emission of Radiation". In Franken, P.A. and Sands, R.H. (Eds.). The Ann Arbor Conference on Optical Pumping, the University of Michigan, 15 June through 18 June 1959. p. 128. OCLC 02460155. ^ "laser". Reference.com. Retrieved 2008-05-15. ^ Conceptual physics, Paul Hewitt, 2002 ^ "Schawlow and Townes invent the laser". Lucent Technologies. 1998. Retrieved 2006-10-24. ^ a b Chu, Steven; Townes, Charles (2003). "Arthur Schawlow". In Edward P. Lazear (ed.),. Biographical Memoirs. vol. 83. National Academy of Sciences. p. 202. ISBN 0-309-08699-X. ^ ""lase"". Dictionary.reference.com. Retrieved 2011-12-10. ^ G.P. Karman, G.S. McDonald?, G.H.C. New, J.P. Woerdman, "Laser Optics: Fractal modes in unstable resonators", Nature, Vol. 402, 138, 11 November 1999. ^ a b Steen, W. M. "Laser Materials Processing", 2nd Ed. 1998. ^ (Italian) "Il rischio da laser: cosa è e come affrontarlo; analisi di un problema non così lontano da noi ("The risk from laser: what it is and what it is like facing it; analysis of a problem which is thus mot far away from us."), Programma Corso di Formazione Obbligatorio anno 2004, Dimitri Batani (Powerpoint presentation >7Mb)". wwwold.unimib.it. Retrieved January 1, 2007. ^ The Nobel Prize in Physics 1966 Presentation Speech by Professor Ivar Waller. Retrieved 1 January 2007. ^ Joan Lisa Bromberg, The Laser in America, 1950–1970 (1991), pp. 74–77 online ^ Maiman, T.H. (1960). "Stimulated optical radiation in ruby". Nature 187 (4736): 493–494. Bibcode 1960Natur.187..493M. doi:10.1038/187493a0. ^ Townes, Charles Hard. "The first laser". University of Chicago. Retrieved 2008-05-15. ^ Hecht, Jeff (2005). Beam: The Race to Make the Laser. Oxford University Press. ISBN 0-19-514210-1. ^ Csele, Mark (2004). "The TEA Nitrogen Gas Laser". Homebuilt Lasers Page. Archived from the original on 2007-09-11. Retrieved 2007-09-15. ^ "Deep UV Lasers" (PDF). Photon Systems, Covina, Calif. Retrieved 2007-05-27. ^ Schuocker, D. (1998). Handbook of the Eurolaser Academy. Springer. ISBN 0412819104. ^ C. Stewen, M. Larionov, and A. Giesen, “Yb:YAG thin disk laser with 1 kW output power,” in OSA Trends in Optics and Photonics, Advanced Solid-State Lasers, H. Injeyan, U. Keller, and C. Marshall, ed. (Optical Society of America, Washington, DC., 2000) pp. 35-41. ^ Wu, X.; et al. (25 October 2004). "Ultraviolet photonic crystal laser". Applied Physics Letters 85 (17): 3657. arXiv:physics/0406005. Bibcode 2004ApPhL..85.3657W. doi:10.1063/1.1808888. ^ "Picolight ships first 4-Gbit/s 1310-nm VCSEL transceivers", Laser Focus World, December 9, 2005, accessed 27 May 2006 ^ F. J. Duarte, Tunable Laser Optics (Elsevier Academic, New York, 2003). ^ Palmer, Jason (2011-06-13). "Laser is produced by a living cell". BBC News. Retrieved 2011-06-13. ^ Malte C. Gather & Seok Hyun Yun (2011-06-12). "Single-cell biological lasers". Nature Photonics. Retrieved 2011-06-13. ^ a b Fildes, Jonathan (2007-09-12). "Mirror particles form new matter". BBC News. Retrieved 2008-05-22. ^ Hecht, Jeff (May 2008). "The history of the x-ray laser". Optics and Photonics News (Optical Society of America) 19 (5): 26–33. ^ Robinson, Clarence A. (1981). "Advance made on high-energy laser". Aviation Week & Space Technology (23 February 1981): 25–27. ^ Charles H. Townes (2003). "The first laser". In Laura Garwin and Tim Lincoln. A Century of Nature: Twenty-One Discoveries that Changed Science and the World. University of Chicago Press. pp. 107–12. ISBN 0-226-28413-1. Retrieved 2008-02-02. ^ Dalrymple BE, Duff JM, Menzel ER. Inherent fingerprint luminescence – detection by laser. Journal of Forensic Sciences, 22(1), 1977, 106-115 ^ Dalrymple BE. Visible and infrared luminescence in documents : excitation by laser. Journal of Forensic Sciences, 28(3), 1983, 692-696 ^ Kincade, Kathy and Stephen Anderson (2005) "Laser Marketplace 2005: Consumer applications boost laser sales 10%", Laser Focus World, vol. 41, no. 1. (online) ^ Steele, Robert V. (2005) "Diode-laser market grows at a slower rate", Laser Focus World, vol. 41, no. 2. (online) ^ "Green Laser 400 mW burn a box CD in 4 second". youtube.com. Retrieved 2011-12-10. ^ "Laser Diode Power Output Based on DVD-R/RW specs". elabz.com. Retrieved 2011-12-10. ^ George M. Peavy, "How to select a surgical veterinary laser", veterinary-laser.com. URL accessed 14 March 2008. ^ "Cascades™ Horizontal Stacked Arrayes". nlight.net. Retrieved March 17, 2011. ^ Heller, Arnie, "Orchestrating the world's most powerful laser." Science and Technology Review. Lawrence Livermore National Laboratory, July/August 2005. URL accessed 27 May 2006. ^ Schewe, Phillip F.; Stein, Ben (9 November 1998). "Physics News Update 401". American Institute of Physics. Retrieved 2008-03-15. ^ PowerLabs? CO2 LASER! Sam Barros 21 June 2006. Retrieved 1 January 2007. ^ "Howto: Make a DVD Burner into a High-Powered Laser". Felesmagus.com. Retrieved 2011-12-10. ^ "Police fight back on laser threat". BBC News. 8 April 2009. Retrieved 4 April 2010. ^ Peter, Pae (March 19, 2009.). "Northrop Advance Brings Era Of The Laser Gun Closer". Los Angeles Times. p. B2.

Further reading Books

Bertolotti, Mario (1999, trans. 2004). The History of the Laser, Institute of Physics. ISBN 0-7503-0911-3 Csele, Mark (2004). Fundamentals of Light Sources and Lasers, Wiley. ISBN 0-471-47660-9 Koechner, Walter (1992). Solid-State Laser Engineering, 3rd ed., Springer-Verlag. ISBN 0-387-53756-2 Siegman, Anthony E. (1986). Lasers, University Science Books. ISBN 0-935702-11-3 Silfvast, William T. (1996). Laser Fundamentals, Cambridge University Press. ISBN 0-521-55617-1 Svelto, Orazio (1998). Principles of Lasers, 4th ed. (trans. David Hanna), Springer. ISBN 0-306-45748-2 Taylor, Nick (2000). LASER: The inventor, the Nobel laureate, and the thirty-year patent war. New York: Simon & Schuster. ISBN 0-684-83515-0. Wilson, J. & Hawkes, J.F.B. (1987). Lasers: Principles and Applications, Prentice Hall International Series in Optoelectronics, Prentice Hall. ISBN 0-13-523697-5 Yariv, Amnon (1989). Quantum Electronics, 3rd ed., Wiley. ISBN 0-471-60997-8 Bromberg, Joan Lisa (1991). The Laser in America, 1950-1970, MIT Press. ISBN 978-0-262-02318-4

Periodicals

Applied Physics B: Lasers and Optics (ISSN 0946-2171) IEEE Journal of Lightwave Technology (ISSN 0733-8724) IEEE Journal of Quantum Electronics (ISSN 0018-9197) IEEE Journal of Selected Topics in Quantum Electronics (ISSN 1077-260X) IEEE Photonics Technology Letters (ISSN 1041-1135) Journal of the Optical Society of America B: Optical Physics (ISSN 0740-3224) Laser Focus World (ISSN 0740-2511) Optics Letters (ISSN 0146-9592) Photonics Spectra (ISSN 0731-1230)

External links Wikimedia Commons has media related to: Lasers

Encyclopedia of laser physics and technology by Dr. Rüdiger Paschotta A Practical Guide to Lasers for Experimenters and Hobbyists by Samuel M. Goldwasser Homebuilt Lasers Page by Professor Mark Csele Powerful laser is 'brightest light in the universe' - The world's most powerful laser as of 2008 might create supernova-like shock waves and possibly even antimatter (New Scientist, 9 April 2008) Homemade laser project by Kip Kedersha "The Laser: basic principles" an online course by Prof. F. Balembois and Dr. S. Forget. Instrumentation for Optics, 2008 Northrop Grumman's Press Release on the Firestrike 15kw tactical laser product. Website on Lasers 50th anniversary by APS, OSA, SPIE Advancing the Laser anniversary site by SPIE: Video interviews, open-access articles, posters, DVDs Bright Idea: The First Lasers Free software for Simulation of random laser dynamics Video Demonstrations in Lasers and Optics Produced by the Massachusetts Institute of Technology (MIT). Real-time effects are demonstrated in a way that would be difficult to see in a classroom setting. Virtual Museum of Laser History, from the touring exhibit by SPIE

View page ratings Rate this page What's this? Trustworthy Objective Complete Well-written I am highly knowledgeable about this topic (optional) Categories:

Lasers Acronyms American inventions Directed-energy weapons Forensic equipment Orphan initialisms Photonics Quantum optics

Log in / create account

Article Talk

Read View source View history

Main page Contents Featured content Current events Random article Donate to Wikipedia

Interaction

Help About Wikipedia Community portal Recent changes Contact Wikipedia

Toolbox Print/export Languages

Afrikaans Ænglisc العربية Azərbaycanca Български Boarisch Bosanski Català Česky Cymraeg Dansk Deutsch Eesti Ελληνικά Español Esperanto فارسی Français Frysk Galego 贛語 ગુજરાતી 한국어 Հայերեն हिन्दी Hrvatski Bahasa Indonesia Italiano עברית Basa Jawa ქართული Қазақша Kreyòl ayisyen Latvie¨u Lietuvių Magyar Македонски മലയാളം Bahasa Melayu Nederlands 日本語 ‪Norsk (bokmål)‬ ‪Norsk (nynorsk)‬ Oʻzbek Polski Português Română Русиньскый Русский Seeltersk Shqip Sicilianu සිංහල Simple English Slovenčina Sloven¨čina Српски / Srpski Srpskohrvatski / Српскохрватски Suomi Svenska தமிழ் తెలుగు ไทย Türkçe Українська اردو ئۇيغۇرچە / Uyghurche Tiếng Việt Võro Winaray ייִדיש 粵語 中文

This page was last modified on 13 April 2012 at 03:52. Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. See Terms of use for details. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization. Contact us

Privacy policy About Wikipedia Disclaimers Mobile view

Wikimedia Foundation Powered by MediaWiki?

Our updated Terms of Use will become effective on May 25, 2012. Find out more. Differential signaling From Wikipedia, the free encyclopedia Jump to: navigation, search This article is about electric signals via wires. For an immunological model attempting to explain how T cells survive selection during maturation, see Differential Signaling Hypothesis.

Differential signaling is a method of transmitting information electrically with two complementary signals sent on two separate wires. The technique can be used for both analog signaling, as in some audio systems, and digital signaling, as in RS-422, RS-485, Ethernet (twisted-pair only), PCI Express and USB. The opposite technique is called single-ended signaling. Elimination of noise by using differential signaling. Contents

1 Advantages 1.1 Tolerance of ground offsets 1.2 Suitability for use with low-voltage electronics 1.3 Resistance to electromagnetic interference 2 Comparison with single-ended signaling 3 Examples 4 Transmission lines 5 Use in computers 6 High-voltage differential signaling 7 See also 8 References

Advantages Tolerance of ground offsets In a system with a differential receiver, desired signals add and noise is subtracted away.

At the end of the connection, the receiving device reads the difference between the two signals. Since the receiver ignores the wires' voltages with respect to ground, small changes in ground potential between transmitter and receiver do not affect the receiver's ability to detect the signal. Suitability for use with low-voltage electronics

In the electronics industry, and particularly in portable and mobile devices, there is a continuing tendency to lower the supply voltage in order to save power and reduce unwanted emitted radiation. A low supply voltage, however, causes problems with signaling because it reduces the noise immunity. Differential signaling helps to reduce these problems because, for a given supply voltage, it gives twice the noise immunity of a single-ended system.

To see why, consider a single-ended digital system with supply voltage V_S\,. The high logic level is V_S\, and the low logic level is 0 V. The difference between the two levels is therefore V_S - 0\,\mathrm{V} = V_S. Now consider a differential system with the same supply voltage. The voltage difference in the high state, where one wire is at V_S\, and the other at 0 V, is V_S - 0\,\mathrm{V} = V_S. The voltage difference in the low state, where the voltages on the wires are exchanged, is 0\,\mathrm{V} - V_S = -V_S. The difference between high and low logic levels is therefore V_S - (-V_S) = 2V_S\,. This is twice the difference of the single-ended system. Supposing that the voltage noise on one wire is uncorrelated to the noise on the other one, the result is that it takes twice as much noise to cause an error with the differential system as with the single-ended system. In other words, the noise immunity is doubled. Resistance to electromagnetic interference

This advantage is not actually due to differential signaling itself, but to the common practice of transmitting differential signals on balanced lines.[1][2] Single-ended signals are still resistant to interference if the lines are balanced and terminated by a differential amplifier. See Balanced line for more details. Comparison with single-ended signaling

In single-ended signaling, the transmitter generates a single voltage that the receiver compares with a fixed reference voltage, both relative to a common ground connection shared by both ends.

The widely used RS-232 system is an example of single-ended signaling, which uses ±12 V to represent a signal, and anything less than ±3 V to represent the lack of a signal. The high voltage levels give the signals some immunity from noise, since few naturally occurring signals can create that sort of voltage. They also have the advantage of requiring only one wire per signal. However, they also have a serious disadvantage: they cannot run at high speeds. The effects of capacitance and inductance, which filter out high-frequency signals, limit the speed. Large voltage swings driving long cables also require significant power from the transmitting end. This problem can be reduced by using smaller voltages, but then the chance of mistaking random environmental noise for a signal becomes much more of a problem. In many instances single-ended designs are not feasible. Another difficulty is the electromagnetic interference that can be generated by a single-ended signaling system which attempts to operate at high speed. Examples

Examples of differential signaling include LVDS, differential ECL, PECL, LVPECL, current loop interfaces such as Musical Instrument Digital Interface (MIDI) hardware, RS-422, RS-485, most Ethernet physical layers, USB, Serial ATA (SATA), TMDS, FireWire?, and HDMI. LVDS is currently the only scheme that combines low power dissipation with high speed.

Examples of single-ended signaling include RS-232 and PATA. Transmission lines

The type of transmission line used to connect two devices (chips, modules) dictates the type of signaling to be used. Single-ended signaling is used with coaxial cables, in which one conductor totally screens the other from the environment. All screens (or shields) are combined into a single piece of material to form a common ground. Differential signaling is used with a balanced pair of conductors. For short cables and low frequencies, the two methods are equivalent, so cheap single-ended circuits with a common ground can be used with cheap cables. As signaling speeds become faster, wires begin to behave as transmission lines. Use in computers

Differential signaling is often used in computers to reduce electromagnetic interference, because complete screening is not possible with microstrips and chips in computers, due to geometric constraints and the fact that screening does not work at DC. If a DC power supply line and a low-voltage signal line share the same ground, the power current returning through the ground can induce a significant voltage in it. A low-resistance ground reduces this problem to some extent. A balanced pair of microstrip lines is a convenient solution, because it does not need an additional PCB layer, as a stripline does. Because each line causes a matching image current in the ground plane, which is required anyway for supplying power, the pair looks like four lines and therefore has a shorter crosstalk distance than a simple isolated pair. In fact, it behaves as well as a twisted pair. Low crosstalk is important when many lines are packed into a small space, as on a typical PCB. High-voltage differential signaling

High-voltage differential (HVD) signaling uses high-voltage signals. In computer electronics, "high voltage" normally means 5 volts or more.

SCSI-1 variations included a high voltage differential (HVD) implementation whose maximum cable length was many times that of the single-ended version. SCSI equipment for example allows a maximum total cable length of 25 meters using HVD, while single-ended SCSI allows a maximum cable length of 1.5 to 6 meters, depending on bus speed. LVD versions of SCSI allow less than 25 m cable length not because of the lower voltage, but because these SCSI standards allow much higher speeds than the older HVD SCSI.

The term high-voltage differential signaling is a generic one that describes a variety of systems. Low-voltage differential signaling or LVDS, on the other hand, is a specific system defined by a TIA/EIA standard. See also

Current mode logic (CML) Low-voltage differential signaling (LVDS) Low-voltage positive emitter-coupled logic (LVPECL) Positive emitter-coupled logic (PECL) Transition Minimized Differential Signaling (TMDS) Longitudinal voltage Differential amplifier Differential pair Twisted pair Current loop signaling

References

^ Graham Blyth. "Audio Balancing Issues". Professional Audio Learning Zone. Soundcraft. Retrieved 2009-08-25. "Let’s be clear from the start here: if the source impedance of each of these signals was not identical i.e. balanced, the method would fail completely, the matching of the differential audio signals being irrelevant, though desirable for headroom considerations." ^ "Part 3: Amplifiers". Sound system equipment (Third edition ed.). Geneva: International Electrotechnical Commission. 2000. p. 111. IEC 602689-3:2001. "Only the common-mode impedance balance of the driver, line, and receiver play a role in noise or interference rejection. This noise or interference rejection property is independent of the presence of a desired differential signal."

View page ratings Rate this page What's this? Trustworthy Objective Complete Well-written I am highly knowledgeable about this topic (optional) Categories:

Computer buses Communication circuits

Log in / create account

Article Talk

Read Edit View history

Main page Contents Featured content Current events Random article Donate to Wikipedia

Interaction

Help About Wikipedia Community portal Recent changes Contact Wikipedia

Toolbox Print/export Languages

Deutsch Español Nederlands Slovenčina 中文 日本語

This page was last modified on 16 April 2012 at 21:24. Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. See Terms of use for details. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization. Contact us

Privacy policy About Wikipedia Disclaimers Mobile view

Wikimedia Foundation Powered by MediaWiki?

Our updated Terms of Use will become effective on May 25, 2012. Find out more. Category 5 cable From Wikipedia, the free encyclopedia Jump to: navigation, search Category 5 patch cable in T568B wiring

Category 5 cable (Cat 5) is a twisted pair cable for carrying signals. This type of cable is used in structured cabling for computer networks such as Ethernet. It is also used to carry other signals such as telephony and video. The cable is commonly connected using punch down blocks and modular connectors. Most Category 5 cables are unshielded, relying on the twisted pair design and differential signaling for noise rejection. Category 5 has been superseded by the Category 5e (enhanced) specification. TIA/EIA-568-A.1-2001 T568A Wiring Pin Pair Wire Color 1 3 1 Pair 3 Wire 1 white/green 2 3 2 Pair 3 Wire 2 green 3 2 1 Pair 2 Wire 1 white/orange 4 1 2 Pair 1 Wire 2 blue 5 1 1 Pair 1 Wire 1 white/blue 6 2 2 Pair 2 Wire 2 orange 7 4 1 Pair 4 Wire 1 white/brown 8 4 2 Pair 4 Wire 2 brown TIA/EIA-568-B.1-2001 T568B Wiring[1] Pin Pair Wire Color 1 2 1 Pair 2 Wire 1 white/orange 2 2 2 Pair 2 Wire 2 orange 3 3 1 Pair 3 Wire 1 white/green 4 1 2 Pair 1 Wire 2 blue 5 1 1 Pair 1 Wire 1 white/blue 6 3 2 Pair 3 Wire 2 green 7 4 1 Pair 4 Wire 1 white/brown 8 4 2 Pair 4 Wire 2 brown USOC/RJ61 Wiring Pin Pair Wire Color 1 4 tip Pair 4 Wire 1 white/brown 2 3 tip Pair 3 Wire 1 white/green 3 2 tip Pair 2 Wire 1 white/orange 4 1 ring Pair 1 Wire 2 blue 5 1 tip Pair 1 Wire 1 white/blue 6 2 ring Pair 2 Wire 2 orange 7 3 ring Pair 3 Wire 2 green 8 4 ring Pair 4 Wire 2 brown Partially stripped cable showing the twisted pairs. A Cat 5e Wall outlet showing the two wiring schemes: A for T568A, B for T568B. Contents

1 Cable standard 1.1 Conductors required 1.2 Bending radius 1.3 Maximum cable segment length 2 Characteristics 2.1 Dielectric 2.2 Individual twist lengths 2.3 Environmental ratings 3 See also 4 References

Cable standard

The specification for Category 5 cable was defined in ANSI/TIA/EIA-568-A, with clarification in TSB-95.[citation needed] These documents specified performance characteristics and test requirements for frequencies of up to 100 MHz. Cable types, connector types and cabling topologies are defined by TIA/EIA-568-B. The cable is terminated in either the T568A scheme or the T568B scheme. The two schemes work equally well and may be mixed in an installation so long as the same scheme is used on both ends of each cable. Nearly always, 8P8C modular connectors, often referred to as RJ45, are used for connecting category 5 cable. The USOC/RJ-61 standard is used in multi-line telephone connections.

Each of the four pairs in a Cat 5 cable has differing precise number of twists per metre to minimize crosstalk between the pairs. Although cable assemblies containing 4 pairs are common, Category 5 is not limited to 4 pairs. Backbone applications involve using up to 100 pairs.[2] This use of balanced lines helps preserve a high signal-to-noise ratio despite interference from both external sources and crosstalk from other pairs. Category 5 cabling is most commonly used for faster Ethernet networks, such as 100BASE-TX and 1000BASE-T.

The cable is available in both stranded and solid conductor forms. The stranded form is more flexible and withstands more bending without breaking and is suited for reliable connections with insulation piercing connectors, but makes unreliable connections in insulation-displacement connectors (IDCs).[clarification needed] The solid form is less expensive[citation needed] and makes reliable connections into insulation displacement connectors, but makes unreliable connections in insulation piercing connectors.[clarification needed] Taking these things into account, building wiring (for example, the wiring inside the wall that connects a wall socket to a central patch panel) is solid core, while patch cables (for example, the movable cable that plugs into the wall socket on one end and a computer on the other) are stranded. Outer insulation is typically PVC or LSOH. The specific category of cable in use can be identified by the printing on the side of the cable.[3] Conductors required

10BASE-T and 100BASE-TX Ethernet connections require two cable pairs. 1000BASE-T Ethernet connections require four cable pairs. Cat 5 and Cat 5e cables typically use 24 - 26 AWG wire. Category 6 cable tends to have slightly more copper in each cable, with standard gauges of 22 - 24 AWG.[citation needed] Bending radius

Most Category 5 cables can be bent at any radius exceeding approximately four times the diameter of the cable.[4] Maximum cable segment length

According to the ANSI/TIA/EIA standard for category 5e copper cable (TIA/EIA 568-5-A[5]), the maximum length for a cable segment is 100 meters (328 feet). If longer runs are required, the use of active hardware such as a repeater, or a switch, is necessary.[6][7] The specifications for 10BASE-T networking specify a 100 metre length between active devices.[8] This allows for 90 metres of fixed cabling, two connectors and two patch leads of 5 metres, one at each end. Characteristics Electrical characteristics for Cat 5e UTP Property Nominal Value Tolerance Unit ref Characteristic impedance @ 100 MHz 100 ± 15 Ω [9] Nominal characteristic impedance @ 100 MHz 100 ± 5 Ω [9] DC-Loop resistance ≤ 0.188 Ω/m [9] Propagation speed 0.64 c [9] Propagation delay 4.80-5.30 ns/m [9] Delay skew < 100 MHz < 0.20 ns/m [9] Capacitance at 800 Hz 52 pF/m [9] Inductance 525 nH/m [10] Corner frequency ≤ 57 kHz [10] Max tensile load, during installation 100 N [9] Wire diameter AWG-24 (0.51054 mm ) [9][11] Insulation thickness 0.245 mm [9] Maximum current per conductor 0.577 A [11] Temperature operating -55 to +60 °C [9] Dielectric Example materials used as dielectric in the cable[12] Acronym Material PVC Polyvinyl Chloride PE Polyethylene FP Foamed polyethylene FEP Teflon/fluorinated ethylene propylene FFEP Foamed Teflon/fluorinated ethylene propylene AD/PE Air dielectric/polyethylene Individual twist lengths

By altering the length of each twist, crosstalk is reduced, without affecting the characteristic impedance.[10][dubious – discuss] The distance per twist is commonly referred to as pitch. Pair color [cm] per turn Turns per [m] Green 1.53 65.2 Blue 1.54 64.8 Orange 1.78 56.2 Brown 1.94 51.7 Environmental ratings US & Canada fire certifications[13][14] Class Phrase Standards CMP Communications Plenum CSA FT6[15] or NFPA 262[16] (UL 910) CMR Communications Riser UL 1666 CMG Communications General purpose CSA FT4 CM Communications UL 1685 (UL 1581, Sec. 1160) Vertical-Tray CMX Communications Residential UL 1581, Sec. 1080 (VW-1) CMH CSA FT1

CMR (Communications Riser), insulated with high-density polyolefin and jacketed with low-smoke polyvinyl chloride (PVC) can be replaced by a CMP (Communications Plenum), insulated with fluorinated ethylene propylene (FEP) and polyethylene (PE) and jacketed with low-smoke polyvinyl chloride (PVC), due to better flame test ratings. CM (Communications) is insulated with high-density polyolefin, but not jacketed with PVC and therefore is the lowest of the three in flame resistance.[13]

Some cables are "UV-rated" or "UV-stable" meaning they can be exposed to outdoor UV radiation without significant destruction. The materials used for the mantle are usually PVC.[17]

Any cable that contains air spaces can breathe in moisture, especially if the cable runs between indoor and outdoor spaces. Warm moist air can cause condensation inside the colder parts of the cable outdoors. It may be necessary to take precautions such as sealing the ends of the cables. Some cables are suitable for "direct burial", but this usually requires that the cable be gel filled in order to hinder moisture migration into the cable.

When using a cable for a tower, attention must be given to vertical cable runs that may channel water into sensitive indoor equipment.[18] This can often be solved by adding a drip-loop at the bottom of the run of cable.

Plenum-rated cables are slower to burn and produce less smoke than cables using a mantle of materials like PVC. This also affects legal requirements for a fire sprinkler system. That is if a plenum-rated cable is used, sprinkler requirement may be eliminated.[19]

Shielded cables (FTP/STP) are useful for environments where proximity to RF equipment, may introduce electromagnetic interference, and can also be used where eavesdropping likelihood should be minimized. See also

American wire gauge (AWG) Audio over Ethernet (AoE?) Ethernet over twisted pair (10/100/1000Base-T) Power over Ethernet (PoE?)

References

^ "ANSI/TIA/EIA-568-B.1-2001 Approved: April 12, 2001 ; Commercial Building Telecommunications Cabling Standard Part 1: General Requirements". 090917 nag.ru ^ As noted in ANSI/TIA/EIA-568-B-2 standard for backbone applications ^ "Ethernet Cable Identification and Use". Donutey. Retrieved 2011-04-01. ^ "Selecting coax and twisted-pair cable - Electronic Products". 081216 www2.electronicproducts.com ^ "The Evolution of Copper Cabling Systems from Cat5 to Cat5e to Cat6".www.panduit.com ^ "UTP technology by Extron Technologies". www.extron.com ^ "Cat5e Cable Wiring Schemes White Paper by B&B Electronics". bb-elec.com ^ IEEE Std 802.3-2008, Institute of Electrical and Electronics Engineers, 2008, Table 13-1 ^ a b c d e f g h i j k "SuperCat OUTDOOR CAT 5e U/UTP". 080319 draka.com ^ a b c "Transmission Line Zo". 090113 prc68.com ^ a b "American Wire Gauge table and AWG Electrical Current Load Limits". 081220 powerstream.com ^ "UL Listed / ISO 9001 Compliant". 090127 unioncopper.com ^ a b "CSA Flame Test Ratings". 090126 74.125.77.132 ^ "22Technical Information" (PDF).[dead link] 090126 belden.com ^ "CSA Flame Test Ratings". Retrieved 2012-01-09. ^ "The Flame Tests Conducted On A Cat6 Plenum Cable". Retrieved 2011-04-01. ^ "CAT5e CMR/CMX mean it's uv rated ? - dslreports.com". 090126 broadbandreports.com ^ "A dumb mistake a green WISP operator once made. - dslreports.com". 090126 broadbandreports.com ^ "What are the differences between PVC, riser and plenum-rated cables? - Ask or Answer Questions on Computers & Technology, Ask & Read old Answers on Computers & Technology - ibibo sawaal". 090126 sawaal.ibibo.com

[show]

v t e

Unshielded and shielded twisted pair cabling standards [show]

v t e

Telecommunications (general) View page ratings Rate this page What's this? Trustworthy Objective Complete Well-written I am highly knowledgeable about this topic (optional) Categories:

Networking hardware Signal cables Ethernet cables

Log in / create account

Article Talk

Read Edit View history

Main page Contents Featured content Current events Random article Donate to Wikipedia

Interaction

Help About Wikipedia Community portal Recent changes Contact Wikipedia

Toolbox Print/export Languages

Afrikaans العربية Deutsch Ελληνικά Español Français Македонски 日本語 ‪Norsk (bokmål)‬ Svenska Türkçe 中文

This page was last modified on 10 April 2012 at 04:50. Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. See Terms of use for details. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization. Contact us

Privacy policy About Wikipedia Disclaimers Mobile view

Wikimedia Foundation Powered by MediaWiki? Our updated Terms of Use will become effective on May 25, 2012. Find out more. Category 5 cable From Wikipedia, the free encyclopedia Jump to: navigation, search Category 5 patch cable in T568B wiring

Category 5 cable (Cat 5) is a twisted pair cable for carrying signals. This type of cable is used in structured cabling for computer networks such as Ethernet. It is also used to carry other signals such as telephony and video. The cable is commonly connected using punch down blocks and modular connectors. Most Category 5 cables are unshielded, relying on the twisted pair design and differential signaling for noise rejection. Category 5 has been superseded by the Category 5e (enhanced) specification. TIA/EIA-568-A.1-2001 T568A Wiring Pin Pair Wire Color 1 3 1 Pair 3 Wire 1 white/green 2 3 2 Pair 3 Wire 2 green 3 2 1 Pair 2 Wire 1 white/orange 4 1 2 Pair 1 Wire 2 blue 5 1 1 Pair 1 Wire 1 white/blue 6 2 2 Pair 2 Wire 2 orange 7 4 1 Pair 4 Wire 1 white/brown 8 4 2 Pair 4 Wire 2 brown TIA/EIA-568-B.1-2001 T568B Wiring[1] Pin Pair Wire Color 1 2 1 Pair 2 Wire 1 white/orange 2 2 2 Pair 2 Wire 2 orange 3 3 1 Pair 3 Wire 1 white/green 4 1 2 Pair 1 Wire 2 blue 5 1 1 Pair 1 Wire 1 white/blue 6 3 2 Pair 3 Wire 2 green 7 4 1 Pair 4 Wire 1 white/brown 8 4 2 Pair 4 Wire 2 brown USOC/RJ61 Wiring Pin Pair Wire Color 1 4 tip Pair 4 Wire 1 white/brown 2 3 tip Pair 3 Wire 1 white/green 3 2 tip Pair 2 Wire 1 white/orange 4 1 ring Pair 1 Wire 2 blue 5 1 tip Pair 1 Wire 1 white/blue 6 2 ring Pair 2 Wire 2 orange 7 3 ring Pair 3 Wire 2 green 8 4 ring Pair 4 Wire 2 brown Partially stripped cable showing the twisted pairs. A Cat 5e Wall outlet showing the two wiring schemes: A for T568A, B for T568B. Contents

1 Cable standard 1.1 Conductors required 1.2 Bending radius 1.3 Maximum cable segment length 2 Characteristics 2.1 Dielectric 2.2 Individual twist lengths 2.3 Environmental ratings 3 See also 4 References

Cable standard

The specification for Category 5 cable was defined in ANSI/TIA/EIA-568-A, with clarification in TSB-95.[citation needed] These documents specified performance characteristics and test requirements for frequencies of up to 100 MHz. Cable types, connector types and cabling topologies are defined by TIA/EIA-568-B. The cable is terminated in either the T568A scheme or the T568B scheme. The two schemes work equally well and may be mixed in an installation so long as the same scheme is used on both ends of each cable. Nearly always, 8P8C modular connectors, often referred to as RJ45, are used for connecting category 5 cable. The USOC/RJ-61 standard is used in multi-line telephone connections.

Each of the four pairs in a Cat 5 cable has differing precise number of twists per metre to minimize crosstalk between the pairs. Although cable assemblies containing 4 pairs are common, Category 5 is not limited to 4 pairs. Backbone applications involve using up to 100 pairs.[2] This use of balanced lines helps preserve a high signal-to-noise ratio despite interference from both external sources and crosstalk from other pairs. Category 5 cabling is most commonly used for faster Ethernet networks, such as 100BASE-TX and 1000BASE-T.

The cable is available in both stranded and solid conductor forms. The stranded form is more flexible and withstands more bending without breaking and is suited for reliable connections with insulation piercing connectors, but makes unreliable connections in insulation-displacement connectors (IDCs).[clarification needed] The solid form is less expensive[citation needed] and makes reliable connections into insulation displacement connectors, but makes unreliable connections in insulation piercing connectors.[clarification needed] Taking these things into account, building wiring (for example, the wiring inside the wall that connects a wall socket to a central patch panel) is solid core, while patch cables (for example, the movable cable that plugs into the wall socket on one end and a computer on the other) are stranded. Outer insulation is typically PVC or LSOH. The specific category of cable in use can be identified by the printing on the side of the cable.[3] Conductors required

10BASE-T and 100BASE-TX Ethernet connections require two cable pairs. 1000BASE-T Ethernet connections require four cable pairs. Cat 5 and Cat 5e cables typically use 24 - 26 AWG wire. Category 6 cable tends to have slightly more copper in each cable, with standard gauges of 22 - 24 AWG.[citation needed] Bending radius

Most Category 5 cables can be bent at any radius exceeding approximately four times the diameter of the cable.[4] Maximum cable segment length

According to the ANSI/TIA/EIA standard for category 5e copper cable (TIA/EIA 568-5-A[5]), the maximum length for a cable segment is 100 meters (328 feet). If longer runs are required, the use of active hardware such as a repeater, or a switch, is necessary.[6][7] The specifications for 10BASE-T networking specify a 100 metre length between active devices.[8] This allows for 90 metres of fixed cabling, two connectors and two patch leads of 5 metres, one at each end. Characteristics Electrical characteristics for Cat 5e UTP Property Nominal Value Tolerance Unit ref Characteristic impedance @ 100 MHz 100 ± 15 Ω [9] Nominal characteristic impedance @ 100 MHz 100 ± 5 Ω [9] DC-Loop resistance ≤ 0.188 Ω/m [9] Propagation speed 0.64 c [9] Propagation delay 4.80-5.30 ns/m [9] Delay skew < 100 MHz < 0.20 ns/m [9] Capacitance at 800 Hz 52 pF/m [9] Inductance 525 nH/m [10] Corner frequency ≤ 57 kHz [10] Max tensile load, during installation 100 N [9] Wire diameter AWG-24 (0.51054 mm ) [9][11] Insulation thickness 0.245 mm [9] Maximum current per conductor 0.577 A [11] Temperature operating -55 to +60 °C [9] Dielectric Example materials used as dielectric in the cable[12] Acronym Material PVC Polyvinyl Chloride PE Polyethylene FP Foamed polyethylene FEP Teflon/fluorinated ethylene propylene FFEP Foamed Teflon/fluorinated ethylene propylene AD/PE Air dielectric/polyethylene Individual twist lengths

By altering the length of each twist, crosstalk is reduced, without affecting the characteristic impedance.[10][dubious – discuss] The distance per twist is commonly referred to as pitch. Pair color [cm] per turn Turns per [m] Green 1.53 65.2 Blue 1.54 64.8 Orange 1.78 56.2 Brown 1.94 51.7 Environmental ratings US & Canada fire certifications[13][14] Class Phrase Standards CMP Communications Plenum CSA FT6[15] or NFPA 262[16] (UL 910) CMR Communications Riser UL 1666 CMG Communications General purpose CSA FT4 CM Communications UL 1685 (UL 1581, Sec. 1160) Vertical-Tray CMX Communications Residential UL 1581, Sec. 1080 (VW-1) CMH CSA FT1

CMR (Communications Riser), insulated with high-density polyolefin and jacketed with low-smoke polyvinyl chloride (PVC) can be replaced by a CMP (Communications Plenum), insulated with fluorinated ethylene propylene (FEP) and polyethylene (PE) and jacketed with low-smoke polyvinyl chloride (PVC), due to better flame test ratings. CM (Communications) is insulated with high-density polyolefin, but not jacketed with PVC and therefore is the lowest of the three in flame resistance.[13]

Some cables are "UV-rated" or "UV-stable" meaning they can be exposed to outdoor UV radiation without significant destruction. The materials used for the mantle are usually PVC.[17]

Any cable that contains air spaces can breathe in moisture, especially if the cable runs between indoor and outdoor spaces. Warm moist air can cause condensation inside the colder parts of the cable outdoors. It may be necessary to take precautions such as sealing the ends of the cables. Some cables are suitable for "direct burial", but this usually requires that the cable be gel filled in order to hinder moisture migration into the cable.

When using a cable for a tower, attention must be given to vertical cable runs that may channel water into sensitive indoor equipment.[18] This can often be solved by adding a drip-loop at the bottom of the run of cable.

Plenum-rated cables are slower to burn and produce less smoke than cables using a mantle of materials like PVC. This also affects legal requirements for a fire sprinkler system. That is if a plenum-rated cable is used, sprinkler requirement may be eliminated.[19]

Shielded cables (FTP/STP) are useful for environments where proximity to RF equipment, may introduce electromagnetic interference, and can also be used where eavesdropping likelihood should be minimized. See also

American wire gauge (AWG) Audio over Ethernet (AoE?) Ethernet over twisted pair (10/100/1000Base-T) Power over Ethernet (PoE?)

References

^ "ANSI/TIA/EIA-568-B.1-2001 Approved: April 12, 2001 ; Commercial Building Telecommunications Cabling Standard Part 1: General Requirements". 090917 nag.ru ^ As noted in ANSI/TIA/EIA-568-B-2 standard for backbone applications ^ "Ethernet Cable Identification and Use". Donutey. Retrieved 2011-04-01. ^ "Selecting coax and twisted-pair cable - Electronic Products". 081216 www2.electronicproducts.com ^ "The Evolution of Copper Cabling Systems from Cat5 to Cat5e to Cat6".www.panduit.com ^ "UTP technology by Extron Technologies". www.extron.com ^ "Cat5e Cable Wiring Schemes White Paper by B&B Electronics". bb-elec.com ^ IEEE Std 802.3-2008, Institute of Electrical and Electronics Engineers, 2008, Table 13-1 ^ a b c d e f g h i j k "SuperCat OUTDOOR CAT 5e U/UTP". 080319 draka.com ^ a b c "Transmission Line Zo". 090113 prc68.com ^ a b "American Wire Gauge table and AWG Electrical Current Load Limits". 081220 powerstream.com ^ "UL Listed / ISO 9001 Compliant". 090127 unioncopper.com ^ a b "CSA Flame Test Ratings". 090126 74.125.77.132 ^ "22Technical Information" (PDF).[dead link] 090126 belden.com ^ "CSA Flame Test Ratings". Retrieved 2012-01-09. ^ "The Flame Tests Conducted On A Cat6 Plenum Cable". Retrieved 2011-04-01. ^ "CAT5e CMR/CMX mean it's uv rated ? - dslreports.com". 090126 broadbandreports.com ^ "A dumb mistake a green WISP operator once made. - dslreports.com". 090126 broadbandreports.com ^ "What are the differences between PVC, riser and plenum-rated cables? - Ask or Answer Questions on Computers & Technology, Ask & Read old Answers on Computers & Technology - ibibo sawaal". 090126 sawaal.ibibo.com

[show]

v t e

Unshielded and shielded twisted pair cabling standards [show]

v t e

Telecommunications (general) View page ratings Rate this page What's this? Trustworthy Objective Complete Well-written I am highly knowledgeable about this topic (optional) Categories:

Networking hardware Signal cables Ethernet cables

Log in / create account

Article Talk

Read Edit View history

Main page Contents Featured content Current events Random article Donate to Wikipedia

Interaction

Help About Wikipedia Community portal Recent changes Contact Wikipedia

Toolbox Print/export Languages

Afrikaans العربية Deutsch Ελληνικά Español Français Македонски 日本語 ‪Norsk (bokmål)‬ Svenska Türkçe 中文

This page was last modified on 10 April 2012 at 04:50. Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. See Terms of use for details. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization. Contact us

Privacy policy About Wikipedia Disclaimers Mobile view

Wikimedia Foundation Powered by MediaWiki? Our updated Terms of Use will become effective on May 25, 2012. Find out more. Category 5 cable From Wikipedia, the free encyclopedia Jump to: navigation, search Category 5 patch cable in T568B wiring

Category 5 cable (Cat 5) is a twisted pair cable for carrying signals. This type of cable is used in structured cabling for computer networks such as Ethernet. It is also used to carry other signals such as telephony and video. The cable is commonly connected using punch down blocks and modular connectors. Most Category 5 cables are unshielded, relying on the twisted pair design and differential signaling for noise rejection. Category 5 has been superseded by the Category 5e (enhanced) specification. TIA/EIA-568-A.1-2001 T568A Wiring Pin Pair Wire Color 1 3 1 Pair 3 Wire 1 white/green 2 3 2 Pair 3 Wire 2 green 3 2 1 Pair 2 Wire 1 white/orange 4 1 2 Pair 1 Wire 2 blue 5 1 1 Pair 1 Wire 1 white/blue 6 2 2 Pair 2 Wire 2 orange 7 4 1 Pair 4 Wire 1 white/brown 8 4 2 Pair 4 Wire 2 brown TIA/EIA-568-B.1-2001 T568B Wiring[1] Pin Pair Wire Color 1 2 1 Pair 2 Wire 1 white/orange 2 2 2 Pair 2 Wire 2 orange 3 3 1 Pair 3 Wire 1 white/green 4 1 2 Pair 1 Wire 2 blue 5 1 1 Pair 1 Wire 1 white/blue 6 3 2 Pair 3 Wire 2 green 7 4 1 Pair 4 Wire 1 white/brown 8 4 2 Pair 4 Wire 2 brown USOC/RJ61 Wiring Pin Pair Wire Color 1 4 tip Pair 4 Wire 1 white/brown 2 3 tip Pair 3 Wire 1 white/green 3 2 tip Pair 2 Wire 1 white/orange 4 1 ring Pair 1 Wire 2 blue 5 1 tip Pair 1 Wire 1 white/blue 6 2 ring Pair 2 Wire 2 orange 7 3 ring Pair 3 Wire 2 green 8 4 ring Pair 4 Wire 2 brown Partially stripped cable showing the twisted pairs. A Cat 5e Wall outlet showing the two wiring schemes: A for T568A, B for T568B. Contents

1 Cable standard 1.1 Conductors required 1.2 Bending radius 1.3 Maximum cable segment length 2 Characteristics 2.1 Dielectric 2.2 Individual twist lengths 2.3 Environmental ratings 3 See also 4 References

Cable standard

The specification for Category 5 cable was defined in ANSI/TIA/EIA-568-A, with clarification in TSB-95.[citation needed] These documents specified performance characteristics and test requirements for frequencies of up to 100 MHz. Cable types, connector types and cabling topologies are defined by TIA/EIA-568-B. The cable is terminated in either the T568A scheme or the T568B scheme. The two schemes work equally well and may be mixed in an installation so long as the same scheme is used on both ends of each cable. Nearly always, 8P8C modular connectors, often referred to as RJ45, are used for connecting category 5 cable. The USOC/RJ-61 standard is used in multi-line telephone connections.

Each of the four pairs in a Cat 5 cable has differing precise number of twists per metre to minimize crosstalk between the pairs. Although cable assemblies containing 4 pairs are common, Category 5 is not limited to 4 pairs. Backbone applications involve using up to 100 pairs.[2] This use of balanced lines helps preserve a high signal-to-noise ratio despite interference from both external sources and crosstalk from other pairs. Category 5 cabling is most commonly used for faster Ethernet networks, such as 100BASE-TX and 1000BASE-T.

The cable is available in both stranded and solid conductor forms. The stranded form is more flexible and withstands more bending without breaking and is suited for reliable connections with insulation piercing connectors, but makes unreliable connections in insulation-displacement connectors (IDCs).[clarification needed] The solid form is less expensive[citation needed] and makes reliable connections into insulation displacement connectors, but makes unreliable connections in insulation piercing connectors.[clarification needed] Taking these things into account, building wiring (for example, the wiring inside the wall that connects a wall socket to a central patch panel) is solid core, while patch cables (for example, the movable cable that plugs into the wall socket on one end and a computer on the other) are stranded. Outer insulation is typically PVC or LSOH. The specific category of cable in use can be identified by the printing on the side of the cable.[3] Conductors required

10BASE-T and 100BASE-TX Ethernet connections require two cable pairs. 1000BASE-T Ethernet connections require four cable pairs. Cat 5 and Cat 5e cables typically use 24 - 26 AWG wire. Category 6 cable tends to have slightly more copper in each cable, with standard gauges of 22 - 24 AWG.[citation needed] Bending radius

Most Category 5 cables can be bent at any radius exceeding approximately four times the diameter of the cable.[4] Maximum cable segment length

According to the ANSI/TIA/EIA standard for category 5e copper cable (TIA/EIA 568-5-A[5]), the maximum length for a cable segment is 100 meters (328 feet). If longer runs are required, the use of active hardware such as a repeater, or a switch, is necessary.[6][7] The specifications for 10BASE-T networking specify a 100 metre length between active devices.[8] This allows for 90 metres of fixed cabling, two connectors and two patch leads of 5 metres, one at each end. Characteristics Electrical characteristics for Cat 5e UTP Property Nominal Value Tolerance Unit ref Characteristic impedance @ 100 MHz 100 ± 15 Ω [9] Nominal characteristic impedance @ 100 MHz 100 ± 5 Ω [9] DC-Loop resistance ≤ 0.188 Ω/m [9] Propagation speed 0.64 c [9] Propagation delay 4.80-5.30 ns/m [9] Delay skew < 100 MHz < 0.20 ns/m [9] Capacitance at 800 Hz 52 pF/m [9] Inductance 525 nH/m [10] Corner frequency ≤ 57 kHz [10] Max tensile load, during installation 100 N [9] Wire diameter AWG-24 (0.51054 mm ) [9][11] Insulation thickness 0.245 mm [9] Maximum current per conductor 0.577 A [11] Temperature operating -55 to +60 °C [9] Dielectric Example materials used as dielectric in the cable[12] Acronym Material PVC Polyvinyl Chloride PE Polyethylene FP Foamed polyethylene FEP Teflon/fluorinated ethylene propylene FFEP Foamed Teflon/fluorinated ethylene propylene AD/PE Air dielectric/polyethylene Individual twist lengths

By altering the length of each twist, crosstalk is reduced, without affecting the characteristic impedance.[10][dubious – discuss] The distance per twist is commonly referred to as pitch. Pair color [cm] per turn Turns per [m] Green 1.53 65.2 Blue 1.54 64.8 Orange 1.78 56.2 Brown 1.94 51.7 Environmental ratings US & Canada fire certifications[13][14] Class Phrase Standards CMP Communications Plenum CSA FT6[15] or NFPA 262[16] (UL 910) CMR Communications Riser UL 1666 CMG Communications General purpose CSA FT4 CM Communications UL 1685 (UL 1581, Sec. 1160) Vertical-Tray CMX Communications Residential UL 1581, Sec. 1080 (VW-1) CMH CSA FT1

CMR (Communications Riser), insulated with high-density polyolefin and jacketed with low-smoke polyvinyl chloride (PVC) can be replaced by a CMP (Communications Plenum), insulated with fluorinated ethylene propylene (FEP) and polyethylene (PE) and jacketed with low-smoke polyvinyl chloride (PVC), due to better flame test ratings. CM (Communications) is insulated with high-density polyolefin, but not jacketed with PVC and therefore is the lowest of the three in flame resistance.[13]

Some cables are "UV-rated" or "UV-stable" meaning they can be exposed to outdoor UV radiation without significant destruction. The materials used for the mantle are usually PVC.[17]

Any cable that contains air spaces can breathe in moisture, especially if the cable runs between indoor and outdoor spaces. Warm moist air can cause condensation inside the colder parts of the cable outdoors. It may be necessary to take precautions such as sealing the ends of the cables. Some cables are suitable for "direct burial", but this usually requires that the cable be gel filled in order to hinder moisture migration into the cable.

When using a cable for a tower, attention must be given to vertical cable runs that may channel water into sensitive indoor equipment.[18] This can often be solved by adding a drip-loop at the bottom of the run of cable.

Plenum-rated cables are slower to burn and produce less smoke than cables using a mantle of materials like PVC. This also affects legal requirements for a fire sprinkler system. That is if a plenum-rated cable is used, sprinkler requirement may be eliminated.[19]

Shielded cables (FTP/STP) are useful for environments where proximity to RF equipment, may introduce electromagnetic interference, and can also be used where eavesdropping likelihood should be minimized. See also

American wire gauge (AWG) Audio over Ethernet (AoE?) Ethernet over twisted pair (10/100/1000Base-T) Power over Ethernet (PoE?)

References

^ "ANSI/TIA/EIA-568-B.1-2001 Approved: April 12, 2001 ; Commercial Building Telecommunications Cabling Standard Part 1: General Requirements". 090917 nag.ru ^ As noted in ANSI/TIA/EIA-568-B-2 standard for backbone applications ^ "Ethernet Cable Identification and Use". Donutey. Retrieved 2011-04-01. ^ "Selecting coax and twisted-pair cable - Electronic Products". 081216 www2.electronicproducts.com ^ "The Evolution of Copper Cabling Systems from Cat5 to Cat5e to Cat6".www.panduit.com ^ "UTP technology by Extron Technologies". www.extron.com ^ "Cat5e Cable Wiring Schemes White Paper by B&B Electronics". bb-elec.com ^ IEEE Std 802.3-2008, Institute of Electrical and Electronics Engineers, 2008, Table 13-1 ^ a b c d e f g h i j k "SuperCat OUTDOOR CAT 5e U/UTP". 080319 draka.com ^ a b c "Transmission Line Zo". 090113 prc68.com ^ a b "American Wire Gauge table and AWG Electrical Current Load Limits". 081220 powerstream.com ^ "UL Listed / ISO 9001 Compliant". 090127 unioncopper.com ^ a b "CSA Flame Test Ratings". 090126 74.125.77.132 ^ "22Technical Information" (PDF).[dead link] 090126 belden.com ^ "CSA Flame Test Ratings". Retrieved 2012-01-09. ^ "The Flame Tests Conducted On A Cat6 Plenum Cable". Retrieved 2011-04-01. ^ "CAT5e CMR/CMX mean it's uv rated ? - dslreports.com". 090126 broadbandreports.com ^ "A dumb mistake a green WISP operator once made. - dslreports.com". 090126 broadbandreports.com ^ "What are the differences between PVC, riser and plenum-rated cables? - Ask or Answer Questions on Computers & Technology, Ask & Read old Answers on Computers & Technology - ibibo sawaal". 090126 sawaal.ibibo.com

[show]

v t e

Unshielded and shielded twisted pair cabling standards [show]

v t e

Telecommunications (general) View page ratings Rate this page What's this? Trustworthy Objective Complete Well-written I am highly knowledgeable about this topic (optional) Categories:

Networking hardware Signal cables Ethernet cables

Log in / create account

Article Talk

Read Edit View history

Main page Contents Featured content Current events Random article Donate to Wikipedia

Interaction

Help About Wikipedia Community portal Recent changes Contact Wikipedia

Toolbox Print/export Languages

Afrikaans العربية Deutsch Ελληνικά Español Français Македонски 日本語 ‪Norsk (bokmål)‬ Svenska Türkçe 中文

This page was last modified on 10 April 2012 at 04:50. Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. See Terms of use for details. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization. Contact us

Privacy policy About Wikipedia Disclaimers Mobile view

Wikimedia Foundation Powered by MediaWiki?

-- JohnRowe - 01 May 2012

Edit | WYSIWYG | Attach | Printable | Raw View | Backlinks: Web, All Webs | History: r5 < r4 < r3 < r2 < r1 | More topic actions

key Log In or Register
Information

Main Web Users Groups Index Search Changes Notifications Statistics Preferences


Webs Main Sandbox TWiki Zen Information

Main Web Users Groups Index Search Changes Notifications Statistics Preferences


Webs Main Sandbox TWiki Zen

tip TWiki Tip of the Day
Raw Text link
At the bottom of the page next to Edit and Attach , there is a Raw Text link that allows one to ... Read on Read more

 
Astrophysics Wiki


Edit Wysiwyg Attach Printable
This site is powered by the TWiki collaboration platformCopyright © by the contributing authors. All material on this collaboration platform is the property of the contributing authors.
Ideas, requests, problems regarding Astrophysics Wiki? Send feedback